2.4.2. Решатели для структурного и физического мультидоменного моделирования
Главное различие структурного и физического мультидоменного моделирования кроется не столько в форме задания исходной информации, сколько в используемых методах численного интегрирования дифференциальных уравнений. Обычно со структурным моделированием связывают явный решатель, который представляет собой библиотеку классических подпрограмм численного интегрирования, реализующих явные методы интегрирования.
С физическим мультидоменным моделированием обычно связывают неявный решатель, иногда называемый итерационным. Неявный решатель реализует неявный метод моделирования, при котором на каждом шаге сначала формируется полная нелинейная система алгебраических уравнений, которая далее решается итерационным методом. Для этого может использоваться линеаризованная система алгебраических уравнений, а итерационный процесс – сводиться к одному шагу. Важной особенностью неявных методов (кроме всего прочего) является то, что не требуется искусственно разрывать систему, чтобы организовать поток вычислений. Кроме того, техника неявного интегрирования позволяет не использовать технологию Data Flow, т. к. вектор переменных модели рассчитывается не по частям, а весь сразу.
Вообще говоря, явные и неявные методы интегрирования не привязаны жестко к структурному и физическому мультидоменному моделированию.
В рамках структурного моделирования можно использовать как явные, так и неявные методы. В частности, в системе РЕМОС, которая использует неявные методы интегрирования можно моделировать во временной области как объекты, заданные структурными схемами
(т. е. с использованием направленных звеньев), так и объекты, представленные в виде физических принципиальных схем.
И, наоборот, при задании исходной информации в виде принципиальной схемы можно включить в математическое ядро процедуру преобразования мультидоменной информации к форме направленной структуры и затем использовать те же самые методы явного численного интегрирования, что и в обычном структурном моделировании. По всей видимости, именно так сделано в пакетах SimMechanics и SimPower, которые являются подсистемами Simulink. В результате получен некоторый промежуточный вариант, основным достоинством которого является форма задания исходной информации. При этом сам переход к структуре в общем случае неоднозначен. В простых случаях машина может выполнять его самостоятельно, без обращения к пользователю. В более сложных – пользователь должен помочь программе сформировать наиболее рациональную, с точки зрения затрат на интегрирование, структуру. Например, возникает задача размыкания петель, которая отсутствует при использовании неявных методов.
- Математическое моделирование объектов и систем управления предисловие
- Введение
- Глава 1 определение и назначение моделирования
- 1.1. Общие определения
- Контрольные вопросы
- 1.2. Классификация методов моделирования по типу модели
- Контрольные вопросы
- 1.3. Математическое моделирование и математические модели
- Контрольные вопросы
- 1.4. Классификация методов математического моделирования применительно к этапу построения математической модели
- Контрольные вопросы
- 1.5. Классификация методов математического моделирования применительно к этапу исследования математической модели
- Контрольные вопросы
- 1.6. Характеристики математической модели
- Контрольные вопросы
- Глава 2 автоматизированное моделирование технических объектов
- Контрольные вопросы
- 2.1. Особенности современных систем автоматизированного моделирования
- Контрольные вопросы
- 2.2. Иерархическое проектирование и многоуровневое моделирование мехатронных систем
- Контрольные вопросы
- 2.3. Архитектура программ автоматизированного моделирования
- 2.3.1. Графический интерфейс программ математического моделирования динамических систем
- 2.3.2. Язык описания объекта, транслятор, система управления базами данных, монитор
- 2.3.3. Инструментальные средства моделирования (математическое ядро)
- Контрольные вопросы
- 2.4. Методы построения моделирующих программ
- 2.4.1. Структурное моделирование
- 2.4.2. Решатели для структурного и физического мультидоменного моделирования
- Контрольные вопросы
- Глава 3 пакеты визуального моделирования мехатронных систем
- 3.1. Классификация пакетов моделирования технических систем
- 3.2. Пакеты структурного моделирования
- 3.2.1. Пакет matlab/Simulink
- 3.2.2. Пакет VisSim
- 3.2.3. Пакет мвту
- 3.3. Пакеты физического мультидоменного моделирования
- 3.3.1. Пакет Modelica/Dymola
- 3.3.2. Пакет 20-sim
- 3.4. Пакеты среды matlab для моделирования мехатронных систем
- 3.4.1. Принципы моделирования механических систем в пакете SimMechanics
- 3.4.2. Пакет моделирования электрических систем
- 3.4.3. Пакет моделирования гибридных систем StateFlow
- 4. Моделирование объектов в пакетах matlab/Simulink
- 4.1. Моделирование, основные понятия и определения
- 4.2. Вопросы разработки моделей мехатронных систем
- 5. Пакет Simulink – виртуальная среда проектирования мехатронных систем
- 5.1.Общие вопросы создания моделей в пакете Simulink
- 5.1.1. Обозреватель разделов библиотеки пакета Simulink
- 5.1.2. Создание модели
- 5.1.3.Установка параметров расчета и его выполнение
- 5.1.4. Установка параметров обмена
- Установки параметров моделирования
- 5.1.5. Выполнение расчета.
- 5.2. Библиотеки пакета Simulink
- 5.2.1. Sources – источники сигналов
- 5.2.2. Sinks - приемники сигналов
- 5.2.3. Continuous – аналоговые (непрерывные) блоки
- 5.2.4. Discontinuities – нелинейные блоки
- 5.2.5. Discrete – дискретные блоки
- 5.2.6. Math – блоки математических операций
- 5.2.7. Signal Routing – библиотека маршрутизации сигналов
- 6. Динамика объектов управления
- 6.1. Математическое описание непрерывных объектов управления в мехатронных системах
- 6.3. Представление математического описания объектов управления мехатронных систем в пакете Simulink
- 6.4. Динамические характеристики объектов управления
- 6.5.. Динамические характеристики объектов управления
- Глава 7. Элементы устройств силовой электроники в пакете Sim Power System
- 7.1. Пакет расширения Sim Power System
- 7.1.1. Основные особенности создания моделей
- 7.1. Библиотека пакета Sim Power Systems 3
- 7.2. Electrical Sources - источники электрической энергии
- 7.3. Elements - электротехнические элементы
- 7.4. Power Electronics - устройства силовой электроники
- Measurements - измерительные и контрольные устройства
- 7.5. Powerlib Extras - расширенные библиотеки
- 7.6. Активные элементы силовых полупроводниковых преобразователей в пакете Sim Power System
- Идеальный источник постоянного напряжения
- Глава 8. Элементы устройств в пакете Simscape
- Глава 8 Моделирование гидравлических систем в matlab введение
- 8.1. Гидравлические источники
- Библиографический список