Потоковые шифры
Потоковые шифры преобразуют открытый текст в шифротекст по одному биту за операцию. Простейшая реализация потокового шифра показана на 3-й. Генератор потока ключей (иногда называемый генератором с бегущим ключом) выдает поток битов: k1, k2, k3, ..., Ki. Этот поток ключей (иногда называемый бегущим ключом) и поток битов открытого текста, P1,P2, P3, —,Pi, подвергаются операции "исключающее или", и в результате получаетсяы поток битов шифротекста.
Ci =pt XOR kt
При дешифрировании операция XOR выполняется над битами шифротекста и тем же самым потоком кл ю-чей для восстановления битов открытого текста.
Pi = C, XOR kt
Так как
Pi XOR ki XOR ki=pi
это работает правильно.
Безопасность системы полностью зависит от свойств генератора потока ключей . Если генератор потока ключей выдает бесконечную строку нулей, шифротекст будет совпадать с открытым текстом, и все операция будет бессмысленна. Если генератор потока ключей выплевывает повторяющийся 16-битовый шаблон, алгоритм б у-дет являться простым XOR с пренебрежимо малой безопасностью. Если генератор потока ключей выплевывает бесконечный поток случайных битов, вы получаете одноразовый блокнот и идеальную безопасность.
На деле безопасность потокового шифра находится где-то между простым XOR и одноразовым блокнотом.
Генератор потока ключей создает битовый поток, который похож на случайный, но в действительности детерминирован и может быть безошибочно воспроизведен при дешифрировании. Чем ближе выход генератора потока ключей к случайному, тем больше времени потребуется криптоаналитику, чтобы взломать
Потоковый шифр
Однако, если генератор потока ключей при каждом включении создает один и тот же битовый поток , то использующую его криптосистему взломать нетрудно. Покажем на примере, почему это так.
Если к Еве попал шифротекст и соответствующий открытый текст, то она, выполняя операцию XOR над открытым текстом и шифротекстом, раскрывает поток ключей. Или, если у нее есть два различных шифротекста, зашифрованных одинаковым ключом, она может выполнить над ними операцию XOR, получая два открытых текста сообщений, над которыми выполнена операция XOR. Это нетрудно взломать, и затем она может получить поток ключей, выполняя операцию XOR над одним из открытых текстов и шифротекстом.
Теперь, перехватив любое другое шифрованное сообщение, она сможет расшифровать его, используя пол у-ченный поток ключей. Кроме того, она может расшифровать и прочитать любое из ранее перехваченных соо б-щений. Когда Ева получит пару открытый текст/шифротекст, она сможет читать все .
Поэтому для всех потоковых шифров используются ключи. Выход генератора потока ключей является фун к-цией ключа. Теперь, если Ева получит пару открытый текст/шифротекст, она сможет читать только те сообщения, которые зашифрованы тем же ключом. Измените ключ, и противнику придется начать все сначала. Потоковые шифры особенно полезны для шифрования бесконечных потоков коммуникационного трафика, напр и-мер, канала Т1, связывающего два компьютера.
Генератор потока ключей состоит из трех основных частей (см. 2nd). Внутреннее состояние описывает текущее состояние генератора потока ключей. Два генератора потока ключей, с одинаковым ключом и одинаковым внутренним состоянием, выдают одинаковые потоки ключей. Функция выхода по внутреннему состоянию генерирует бит потока ключей. Функция следующего состояния по внутреннему состоянию генерирует новое вну т-реннее состояние.
- Информационная безопасность
- Отправитель и получатель
- Сообщения и шифрование
- Проверка подлинности, целостность и неотрицание авторства
- Алгоритмы и ключи
- Симметричные алгоритмы
- Алгоритмы с открытым ключом
- Криптоанализ
- Безопасность алгоритмов
- Стеганография
- Подстановочные и перестановочные шифры
- Подстановочные шифры
- Перестановочные шифры
- Простое xor
- Одноразовые блокноты
- Ipklpsfhgq
- Элементы протоколов
- Смысл протоколов
- Персонажи
- Протоколы с посредником
- Арбитражные протоколы
- Самодостаточные протоколы
- Попытки вскрытия протоколов
- Передача информации с использованием симметричной криптографии
- Однонаправленные функции
- Однонаправленные хэш-функции
- Коды проверки подлинности сообщения
- Передача информации с использованием криптографии с открытыми ключами
- Смешанные криптосистемы
- Головоломки Меркла
- Цифровые подписи
- Подпись документа с помощью симметричных криптосистем и посредника
- Деревья цифровых подписей
- Подпись документа с помощью криптографии с открытыми ключами
- Подпись документа и метки времени
- Подпись документа с помощью криптографии с открытыми ключами и однонаправленных хэш-функций
- Алгоритмы и терминология
- Несколько подписей
- Невозможность отказаться от цифровой подписи
- Использование цифровых подписей
- Цифровые подписи и шифрование
- Возвращение сообщения при приеме
- Обнаружение вскрытия, основанного на возвращении сообщения
- Вскрытия криптографии с открытыми ключами
- Генерация случайных и псевдослучайных последовательностей
- Псевдослучайные последовательности
- Криптографически безопасные псевдослучайные последовательности
- Настоящие случайные последовательности
- Типы алгоритмов и криптографические режимы
- Режим электронной шифровальной книги
- Набивка
- Повтор блока
- Режим сцепления блоков шифра.
- Потоковые шифры
- Устройство генератора потока ключей.
- Идентификация и авторизация
- Аутентификация
- Парольная аутентификация
- Электронные смарт-карты
- Использование других уникальных предметов
- Методы биометрической аутентификации
- Идентификация по отпечаткам пальцев
- Идентификация по Сетчатке и радужной оболочке глаза
- Голосовая идентификация
- Распознавание по форме лица, руки или ладони
- Распознавание по рукописному почерку.
- Клавиатурный почерк
- Задачи аудита
- Применяемые методики
- Результаты аудита
- Классификация угроз Digital Security (Digital Security Classification of Threats)
- Технологические угрозы информационной безопасности
- Организационные угрозы информационной безопасности
- Социальная инженерия
- Компьютерные вирусы
- Файловые вирусы
- «Троянские кони» («трояны»)
- Сетевые черви
- Загрузочные вирусы
- Мобильные («встроенные») вирусы
- Полиморфизм вирусов
- Противодействие вирусам
- Места наиболее вероятного внедрения вирусов