logo
Имитационное моделирование

Принципы разработки имитационных моделей

При разработке имитационных моделей необходимо соблюдать следующие принципы.

Принцип информационной достаточности.

При полном отсутствии информации об исследуемой системе построение ее модели невозможно. При наличии полной информации о системе ее моделирование лишено смысла. Поэтому существует некоторый критический уровень априорных сведений о системе (уровень информационной достаточности), при достижении которого может быть получена ее адекватная модель.

Принцип осуществимости.

Создаваемая модель должна обеспечить достижение поставленной цели с вероятностью отличной от нуля и за конечное время. Обычно задают пороговое значение вероятности р0 достижения цели моделирования, выраженное функцией p(t), а также преемлемую границу времени t0 достижения этой цели. Модель считается осуществимой, если одновременно выполняются неравенства p(t) ≥ p0, t ≤ t0.

Принцип множественности моделей.

Данный принцип является ключевым. Создаваемая модель должна отражать в первую очередь те свойства реализуемой системы или явления, которые влияют на выбранный показатель эффективности.

При использовании любой конкретной модели исследуются лишь некоторые стороны реальности. Для более полного исследования объекта или системы необходим ряд моделей, позволяющих с разных сторон и с разной степенью детализации отражать рассматриваемый процесс.

Принцип агрегирования.

Сложную систему можно представить в виде агрегатов или подсистем, для описания каждого из которых могут быть пригодны некоторые стандартные математические методы или прикладные модели. Этот принцип позволяет гибко перестраивать общую модель системы в рамках решения задач, которые решаются в процессе исследования.

Если при исследовании построенных моделей получаются сходные результаты, то исследование успешно завершено. Если результаты различаются, то необходимо либо пересмотреть постановку задачи, либо поставить вопрос об адекватности математических моделей.

Принцип параметризации.

В ряде случаев моделируемая система имеет в своем составе некоторые относительно изолированные подсистемы, деятельность которых характеризуется определенными параметрами, которые могут характеризоваться и векторными величинами. Такие подсистемы можно заменять в модели соответствующими числовыми величинами, а не описывать процесс их функционирования. Зависимость значений этих величин в зависимости от ситуации может задаваться в виде таблицы, графика или аналитического выражения. Принцип параметризации позволяет сократить объемы вычислительных и других работ, а также время моделирования. Однако, параметризация может снижать адекватность модели.

Принцип целесообразности.

Необходимо соизмерять точность исходных данных и с результатами, которые нужно получить.

Принцип устойчивости.

Любая сложная система всегда подвергается малым внешним и внутренним воздействиям, поэтому модель должна быть устойчивой, стараться сохранять свои свойства и структуру, даже в случае возникновения различных воздействий.

Принцип адекватности.

Модель должна отражать существенные черты исследуемого явления, при этом не должна сильно упрощать исследуемые процессы.

Степень реализации перечисленных принципов в каждой конкретной модели может быть различной, причем это зависит не только от желания разработчика, но и от соблюдения им технологии моделирования.