Интерфейс vme
-
К какому классу магистралей относится VME? Основные технические характеристики.
-
Какая организация шины адреса?
-
Как обеспечивается масштабируемость шин адреса и данных? Какие преимущества это обеспечивает и какими средствами?
-
Для каких целей можно использовать модификатор адреса?
-
Какие циклы передачи данных реализуются на магистрали? В чем их особенности? Какие технические средства необходимы для их реализации?
-
С помощью каких сигналов обеспечивается программный обмен по магистрали? по прерыванию? в режиме ПДП?
-
Основные характеристики шин передачи управления ШПУ.
-
Какие средства управления приоритетами используются в интерфейсе?
-
Как реализуется процедура арбитража?
-
Способы построения устройств захвата магистрали УЗМ. В чем их отличие?
-
В каких модулях используются УЗМ?
-
Основные технические характеристики шин прерываний ШП.
-
В чем основные отличия в процедуре обработки прерываний по сравнению с ISA и PCI ?
-
Какое количество источников прерываний может быть подключено к магистрали?
-
Какие аппаратные средства необходимы для реализации ввода-вывода по прерыванию?
-
Как реализуется обработка прерываний в многопроцессорных системах?
-
Какие средства необходимы в модуле для реализации программного ввода-вывода? По прерыванию? Режима ПДП?
-
К какому классу магистралей относится VME? Основные технические характеристики.
VME относятся к классу процессорно - независимых, открытых, асинхронных многопроцессорных магистралей.
Макс.пропускная способность – 100 Мб/с
Цикл обмена по магистрали – 125 нс
-
Какая информация передается по шине адреса?
Адресная шина содержит линии (А01-А31) в обычной версии VME и 64 линии в версии D, ША управляется ведущими модулями и устройствами обработки прерываний. При обработке прерываний используются линии А01-А03. Основные шины VME.В версии D (64 бита) по ША и ШД передается в режиме мультиплексирования адресная информация и данные.
-
Как обеспечивается масштабируемость шин адреса и данных? Какие преимущества это обеспечивает и какими средствами?
Масштабируемость – это возможность организации взаимодействия с разл.разрядностью и разл.адресами. Кроме VME масштабируемости нет нигде.
Масштабируемость шины данных обеспечивается идентификатором, который указывает какая часть шины в данный момент используется для передачи информации. Идентификаторы кодируются унитарным кодом, указывая положение байта или байтов на ШД. Например, если разрядность шины 4 байта, то идентификатор должен быть 4 бита. Это позволяет работать с информацией различной разрядности, не применяя процедуру маскирования для формирования размера передаваемого сообщения.
Масштабируемость шины адреса снижает аппаратные затраты в модулях системы, так как при формировании сигналов выборки программно-доступных регистров используется неполная дешифрация адреса.
Существует 4 типа адресации в зависимости от длины адреса: короткая ввода/вывода (1,6 бит), стандартная (24 бита), расширенная (32 бита) и длинная (64 бита). Этот размер может быть изменен в каждом цикле шины, что позволяет использовать большое разнообразие конфигураций системы.
Управление длиной адреса осуществляется кодом модификатора адреса АМ0-АМ5, который сопровождает каждую передачу информации по магистрали. Подчиненные устройства опрашивают АМ0-АМ5, и определяют какие линии адреса необходимо дешифрировать в текущем цикле. Короткие адреса дешифрируются на линиях А01-А15, стандартные - А01-А23, расширенные - на А01-А32, длинные - на А01-А32, LWORD* - D00-D31.
-
Для каких целей можно использовать модификатор адреса?
Модификатор адреса реализует след.функции:
- управляет размером адресного пространства в текущем цикле, может быть задана короткая, стандартная, расширенная или длинная адресация
- указывает тип цикла магистрали и источник управления: супервизор или пользователь.
Модификатор адреса расширяет адресное пространство, т.к. по одному адресу можно обращаться к устройствам, работающим с разными модификаторами. Это возможно потому что в начале цикла модификатора передается сначала модификатор,а затем адрес.
Значение модификатора адреса распределяется специф-ные (стандартные), предназн. для расширения ф-ий интерфейса, и модификатор польз-ля.
Модификатор польз-ля может использоваться для создания команд.
-
Какие циклы передачи данных реализуются на магистрали? я их реализации?
-
С помощью каких сигналов обеспечивается программный обмен по магистрали? по прерыванию? в режиме ПДП?
Адресный строб AS* формируется ведущими модулями и устройствами обработки прерываний. AS*=0 указывает на достоверность информации шины адреса и линий модификатора адреса. Этот сигнал определяет начало выполнения операций на магистралях. AS* относится к классу мощных сигналов с 3 состояниями.
Сигнал подтверждения пересылки данных DTACK* формируется ведомыми модулями или инициаторами прерываний. DTACK* выставляется во время циклов записи после того, как ведомый модуль закончит прием данных. В циклах чтения и подтверждения прерывания DTACK* выставляется после того, как достоверные данные помещаются на ШД.
В VME определено 5 основных циклов передачи данных: чтение/запись, чтение-модификация-запись, блочная передача, “только адресация”, подтверждение прерываний.
Во время цикла чтение/запись ведущий модуль выставляет адрес ведомого на ША и код модификатора, включая IACK* на ШК. Достоверность адресной информации подтверждается сбросом AS* в 0. Затем данные передаются на ШД в сопровождении сигналов WRITE*, DS0*, DS1*. Ведомое устройство дешифрирует адрес и модификатор адреса, определяет особенности данной передачи, принимает или передает данные и формирует нулевые уровни сигналов DTACK* или BERR*. С появлением сигнала DTACK*=0 ведущее устройство устанавливает сигналы AS*, DS0*,DS1* в единичное значение, а ведомое устройство после этого инвертирует значение DTACK*. На этом цикл записи/чтения завершается.
-
Основные характеристики шин передачи управления ШПУ.
Особенностью ШПУ явл-ся расширенное кол-во ведущих устройств за счет параллельно-послед. арбитража, использ-ся центральный арбитр с 4-мя параллельными линиями запроса и 4-мя последовательными линиями подтверждения запроса. Кол-во ведущих устройств ограничено нагрузочной способностью послед.драйверов (источник подтвержд.запроса) и допуст.кол-вом.
ШПУ имеет центр.арбитр, способы управления приоритетами – одноур.
-
Какие средства управления приоритетами используются в интерфейсе?
В VME используется централизованный арбитраж с параллельно-последовательной селекцией источников запросов. На рис.9 представлена структура ШПУ при поступлении запросов по линии BR03*.
Арбитры классифицируются с принятой дисциплиной определения приоритета. Одноуровневый арбитр является наиболее простым. Этот арбитр обслуживает только уровень запроса линии BR3* и выдает разрешение по последовательной цепи BG3IN*/BG3OUT* при BR3*=0, BBSY*=1. Одноуровневые арбитры могут формировать сигнал BCLR*, если требуется прервать работу модуля, который слишком долго занимает магистраль. Основным недостатком арбитра является фиксированное значение приоритетов, которое приведет к наиболее частому занятию магистрали модулями, близко расположенными к слоту 01. Приоритетный арбитр присваивает жесткие приоритеты линиям запросов магистрали: BR3* - высший, а BR0* - низший. Если одновременно пришли несколько запросов, арбитр определяет запрос с максимальным приоритетом и активизирует соответствующую последовательную цепь предоставления магистрали. При поступлении запроса с более высоким приоритетом, чем текущий, формируется сигнал BCLR* и магистраль предоставляется новому модулю.
-
Как реализуется процедура арбитража?
В VME используется централизованный арбитраж с параллельно-последовательной селекцией источников запросов. Циклический арбитр предоставляет равные приоритеты для всех источников запроса. Если в предыдущем цикле магистраль была предоставлена по требованию линии BRn, то наивысшим приоритетом в текущем цикле будет обладать линия BRn-1 . Арбитр может использовать сигнал BCLR*, если ведущее устройство запрашивает магистраль на уровне приоритета, не совпадающем с приоритетом, которому была предоставлена магистраль в последний раз.
Возможен смешанный способ организации арбитров, при котором могут использоваться как 3 типа одновременно, например, в системном контроллере VME1000, так и в различных сочетаниях. УЗМ является функциональным модулем, который размещается на одной плате с ведущими устройствами и обработчиками прерываний. Ведущее устройство формирует сигнал захвата магистрали DWB* и передает его УЗМ, которое выставляет запрос на одной из линий BRn. После получения разрешения по последовательной цепи BGn IN/BGnOUT УЗМ устанавливает сигнал BBSY* и извещает ведущее устройство сигналом DGB*. Ведущее устройство ожидает, когда AS* станет равным логической единице. Это позволяет проводить арбитраж магистрали во время пересылки данных или выполнения цикла подтверждения прерывания, что ускоряет пропускную способность магистрали.
-
Способы построения устройств захвата магистрали УЗМ. В чем их отличие?
-
В каких модулях используются УЗМ?
УЗМ является функциональным модулем, который размещается на одной плате с ведущими устройствами и обработчиками прерываний. Ведущее устройство формирует сигнал захвата магистрали DWB* и передает его УЗМ, которое выставляет запрос на одной из линий BRn. После получения разрешения по последовательной цепи BGn IN/BGnOUT УЗМ устанавливает сигнал BBSY* и извещает ведущее устройство сигналом DGB*. Ведущее устройство ожидает, когда AS* станет равным логической единице. Это позволяет проводить арбитраж магистрали во время пересылки данных или выполнения цикла подтверждения прерывания, что ускоряет пропускную способность магистрали.
При приходе запроса с более высоким приоритетом, текущий запрос может быть сброшен сигналом . Для работы с шинами передачи управления необходимо устройство захвата магистрали, которое может освобождать магистраль по завершению операций по запросу или в циклическом режиме.
В VME функции контроллера распределены между устройством обработки прерывания, драйвером последовательной цепи и устройством запроса прерывания, расположенном в каждом модуле. В состав устройства обработки прерывания обязательно должно входить устройство захвата магистрали (УЗМ). Вектор прерывания формируется в устройстве запроса прерывания. В цикле подтверждения прерывания магистраль предоставляется устройству, которое выставило запрос, уровень запроса соответствует указанному в цикле подтверждению прерывания, длина вектора соответствует длине передаваемых в цикле подтверждений (8, 16, 32). Возможно снятие запроса прерывания по подтверждению прерывания, как в IBM и обращению к регистру ввода/вывода.
-
Основные технические характеристики шин прерываний ШП.
Шина прерываний состоит из линий запроса прерывания IRQ1 - IRQ7, линий последовательной цепи подтверждений прерываний IACKIN*, IACKOUT*, линии подтверждения прерываний IACK*.
Для инициирования прерываний источник запроса выставляет сигнал нулевого уровня на одной из линий IRQ. IRQ1 имеет минимальный приоритет, IRQ7 - максимальный. Число источников запроса ограничено только нагрузочной способностью формирователей, которые должны быть выполнены по схеме с открытым коллектором. Каждая линия IRQi объединяет источники запроса по схеме “монтажное ИЛИ”. Устройство обработки прерываний (УОП) контролирует IRQ и в ответ на запросы генерирует цикл “Подтверждения прерываний”, в процессе которого передается вектор прерывания (информация об адресе программы обработки прерываний). Признаком начала цикла является IACK*=0.
Главное отличие в обработке прерываний состоит в том, что цикл подтвержд.прерыв.включает в себя работу с шинами передачи управления, т.е.запрос прерывания м.перехватить управление магистралью ведущих устройств, запрос воспринимается по уровню, что позволяет на одну линию запроса присоед-ть несколько источников запроса, кол-во уровней 7: RQ1-RQ7.
Исп-ся послед.-парал.способ арбитража.
-
Сравнительная характеристика ШП ISA и VME. В чем основные отличия в процедуре обработки прерываний?
Главное отличие в обработке прерываний состоит в том, что цикл подтвержд.прерыв.включает в себя работу с шинами передачи управления, т.е.запрос прерывания м.перехватить управление магистралью ведущих устройств, запрос воспринимается по уровню, что позволяет на одну линию запроса присоед-ть несколько источников запроса, кол-во уровней 7: RQ1-RQ7.
Исп-ся послед.-парал.способ арбитража.
-
Какое количество источников прерываний может быть подключено к магистрали?
Количество источников запроса определяется электрическими характеристиками драйвера последовательной цепи и требуемым быстродействием (чем больше модулей в последовательной цепи, тем меньше быстродействие).
-
Какие аппаратные средства необходимы для реализации ввода-вывода по прерыванию?
Реализация ввода/вывода по прерыванию выполняется УЗП. Задание требуемого уровня и значения вектора прерывания выполняется УФУВ с помощью установки соответствующих переключателей или перемычек. УЗП обычно реализуется с помощью программируемых логических матриц или специальных БИС. Источниками запроса прерываний являются элементы ФБ. На схеме рис. 17 им является регистр запросов прерываний РЗП, который может быть программнодоступным.
-
Как реализуется обработка прерываний в многопроцессорных системах?
В многопроцессорных системах используется децентрализованная обработка запросов. В этом случае число УОП может быть до 7, каждый из которых обрабатывает свою группу запросов (от 1 до 6). Процессору А, чтобы связаться с процессором В, достаточно запросить прерывание по одной из линий IRQ, принадлежащих этому процессору. При одновременном возникновении запросов прерывания в разных группах очередность обслуживания будет определяться приоритетом соответствующего модуля обработки прерываний на информационной магистрали.
При проектировании модулей, которые не содержат источников запроса на прерывание необходимо обеспечить соединение линий INIACK* и OUTIACK*.
-
Какие средства необходимы в модуле для реализации программного ввода-вывода? По прерыванию? Режима ПДП?
- Общие вопросы организации интерфейсов
- Общие вопросы организации интерфейсов
- Какие основные преимущества открытых систем?
- Как влияют на основные характеристики систем требования электрической? конструктивной? информационной совместимости?
- Какие виды электрических сигналов используются в интерфейсах? Как они влияют на быстродействие, надежность, аппаратные затраты?
- Как влияет организация шин адреса на характеристики системы? Раздельное адресное пространство? Общее адресное пространство? Как определить эти особенности по составу линий?
- Когда целесообразно использовать логическую и географическую адресации? в чем их особенности?
- Сравнить аппаратные затраты на реализацию унитарного и позиционного способов кодирования шины команд.
- Особенности организации интерфейсов с совмещенными шинами и раздельными. Как это влияет на аппаратные затраты?
- Синхронные и асинхронные магистрали. Отличительные признаки. Примеры интерфейсов.
- В каких случаях целесообразно использование синхронного обмена? Асинхронного?
- Привести примеры реализации синхронного и асинхронного обменов.
- В каких случаях целесообразно использование шин передачи управления?
- На основании каких характеристик производится сравнение возможностей шин передачи управления?
- Какие основные характеристики арбитров? Привести примеры использования арбитража.
- Как реализовать управление приоритетами при пространственном арбитраже? последовательном? параллельном?
- На основании каких характеристик производится сравнение возможностей подсистемы прерываний магистрально –модульных систем?
- Как оценить скорость для различных способов ввода-вывода информации?
- С помощью каких средств можно увеличить производительность одноуровневых интерфейсов?
- Как оценить пропускную способность многоуровневых интерфейсов?
- В чем отличие проблемно-ориентированных интерфейсов от интерфейсов общего назначения? Привести примеры проблемно –ориентированных интерфейсов.
- Основные тенденции развития многоуровневых интерфейсов. Какие факторы способствуют “живучести” интерфейсов?
- Основные характеристики мезонинных интерфейсов. Какие преимущества обеспечивает их применение?
- Основные технические характеристики интерфейсов.
- Вопросы(isa)
- Интерфейс pci
- Интерфейс vme
- Интерфейсы последовательного обмена
- Интерфейс rs-232
- Интерфейс rs-485
- Основные характеристики rs-485
- Для каких целей используется защитное заземление?
- Какие протоколы обмена можно использовать при передаче информации ? Их сравнительные характеристики.
- На основании каких характеристик выбирают приемопередатчики rs-485?
- Как управлять приемопередатчиками при работе с омк?
- Какой протокол обмена используется при работе с модулями I-7000?
- Какие преимущества обеспечивает гальваническая развязка ( оптоэлектронная ) ?
- 13. Сравнительная характеристика интерфейсов rs-232 и rs-485.
- 14.Сравнительная характеристика rs-485 и rs-422. Интерфейс usb
- Интерфейс ieee-1394 (Fire Wire)
- Промышленные сети
- Интерфейс caNbus