2.4.3. Очень быстрое умножение числе (алгоритм Шенхаге – Штрассена)
Как уже было замечено, умножение многоразрядных чисел есть сверка двух массивов с переносом в старшие разряды. Если делать свертку с применением БПФ, то трудоемкость подобного алгоритма T(n) = n logn. Однако в таком случае на вход свертки подаются целочисленные массивы, а на выходе получается массив вещественных чисел, которые нужно округлить до ближайшего целого.
Замечание. При большой погрешности вычислений существует опасность округлить не в ту сторону. Следовательно, для уменьшения вероятности ошибки нужно увеличивать разрядность вычислений.
Тогда трудоемкость алгоритма составит:
T(n) = nlog2n · log2(log2n).
т.к. мы увеличиваем разрядность чисел, с которыми работаем
трудоемкость быстрого перемножения
Домашнее задание №3. Найти произведение 3871 и 9211 по формуле быстрого умножения чисел.
Домашнее задание №4. Найти произведение 8329 и 5631 по формуле быстрого умножения чисел.
Yandex.RTB R-A-252273-3
- Основные понятия. Справочный материал
- Основные понятия
- 1.2. Справочный материал. Сравнение скорости роста основных функций
- 2 Новые быстрые версии старых алгоритмов
- 2.1. Сортировки массивов
- 2.1.1 Метод прямого выбора (SelectSort)
- 2.1.2 Быстрая сортировка методом двоичных вставок (MergeSort)
- 2.2. Преобразование Фурье (бпф)
- 2.2.1. Дискретное преобразование Фурье
- 2.2.2. Полубыстрое преобразование Фурье (ппф)
- 2.2.3. Быстрое преобразование Фурье (бпф)
- 2.3. Быстрая свертка
- 2.3.1. Понятие свертки
- 2.3.2. Обычный и быстрый алгоритм свертки
- 2.4. Быстрое умножение
- 2.4.1. Быстрое умножение чисел
- 1 Суммирование
- 4 Произведения чисел вдвое меньшей
- 2.4.2. Быстрое умножение матриц
- 2.4.3. Очень быстрое умножение числе (алгоритм Шенхаге – Штрассена)
- 3. Задачи на графах
- 3.1. Справочный материал
- 3.2. Поиск минимального остова в связном неориентированном взвешенном графе
- 3.3. Нахождение кратчайшего расстояния
- 3.3.1. Алгоритм Форда – Беллмана
- 3.3.2. Алгоритм Дейкстры
- 3.4. Нахождение диаметра, радиуса и центра графа
- 3.5. Задача об изоморфизме графов
- 3.6. Задача коммивояжера. Её решение методом ветвей и границ.
- Задачи динамического программирования
- Задачи динамического программирования. Её решение методом динамического программирования.
- 4.2. Задача об оптимальном наборе самолетом скорости и высоты
- 4.3. Задача грабителя (задача о рюкзаке)
- 4.4. Задача о перемножении матриц
- 5 Классы p и np
- 5.1 Машина Тьюринга
- 5.2 Недетерменированные машины Тьюринга(ндмт)
- 5.3 Сводимость. Np-полнота.
- 5.4 Иерархия по сложности. Труднорешаемые задачи.
- Классы сложности.
- 6 Неразрешимые задачи
- 6.1 Новая модель алгоритма вычислений.
- 6.2 Нумерация программ
- 6.3 Неразрешимые проблемы
- 6.4 Теорема об ускорении
- Лабораторные работы
- Расчетно-графическое задание
- Ответы к домашним заданиям