2.3 Симплекс-метод линейного программирования
Двумерные задачи линейного программирования решаются графически. Для случая N=3 можно рассмотреть трехмерное пространство и целевая функция будет достигать своё оптимальное значение в одной из вершин многогранника.
В общем виде, когда в задаче участвуют N-неизвестных, можно сказать, что область допустимых решений, задаваемая системой ограничивающих условий, представляется выпуклым многогранником в n-мерном пространстве и оптимальное значение целевой функции достигается в одной или нескольких вершинах. Решить данные задачи графически, когда количество переменных более 3 весьма затруднительно. Существует универсальный способ решения задач линейного программирования, называемый симплекс-методом.
Симплекс-метод является основным в линейном программировании. Решение задачи начинается с рассмотрения одной из вершин многогранника. Если исследуемая вершина не соответствует максимуму (минимуму), то переходят к соседней, увеличивая значение функции цели при решении задачи на максимум и уменьшая при решении задачи на минимум. Таким образом, переход от одной вершины к другой улучшает значение функции цели. Так как число вершин многогранника ограничено, то за конечное число шагов гарантируется нахождение оптимального значения или установление того факта, что задача неразрешима.
Этот метод является универсальным, применимым к любой задаче линейного программирования в канонической форме. Система ограничений здесь - система линейных уравнений, в которой количество неизвестных больше количества уравнений. Если ранг системы равен r, то мы можем выбрать r неизвестных, которые выразим через остальные неизвестные. Для определенности предположим, что выбраны первые, идущие подряд, неизвестные X1, X2, ..., Xr. Тогда наша система уравнений может быть записана как
К такому виду можно привести любую совместную систему, например, методом Гаусса. Правда, не всегда можно выражать через остальные первые r неизвестных (мы это сделали для определенности записи). Однако такие r неизвестных обязательно найдутся. Эти неизвестные (переменные) называются базисными, остальные свободными.
Придавая определенные значения свободным переменным и вычисляя значения базисных (выраженных через свободные), мы будем получать различные решения нашей системы ограничений. Таким образом, можно получить любое ее решение. Нас будут интересовать особые решения, получаемые в случае, когда свободные переменные равны нулю. Такие решения называются базисными, их столько же, сколько различных базисных видов у данной системы ограничений. Базисное решение называется допустимым базисным решением или опорным решением, если в нем значения переменных неотрицательны. Если в качестве базисных взяты переменные X1, X2, ..., Xr, то решение {b1, b2,..., br, 0, ..., 0} будет опорным при условии, что b1, b2,..., br ≥ 0.
Симплекс-метод основан на теореме, которая называется фундаментальной теоремой симплекс-метода. Среди оптимальных планов задачи линейного программирования в канонической форме обязательно есть опорное решение ее системы ограничений. Если оптимальный план задачи единственен, то он совпадает с некоторым опорным решением. Различных опорных решений системы ограничений конечное число. Поэтому решение задачи в канонической форме можно было бы искать перебором опорных решений и выбором среди них того, для которого значение F самое большое. Но, во-первых, все опорные решения неизвестны и их нужно находить, a, во-вторых, в реальных задачах этих решений очень много и прямой перебор вряд ли возможен. Симплекс-метод представляет собой некоторую процедуру направленного перебора опорных решений. Исходя из некоторого, найденного заранее опорного решения по определенному алгоритму симплекс-метода мы подсчитываем новое опорное решение, на котором значение целевой функции F не меньше, чем на старом. После ряда шагов мы приходим к опорному решению, которое является оптимальным планом.
Итак, симплексный метод вносит определенный порядок как при нахождении первого (исходного) базисного решения, так и при переходе к другим базисным решениям. Его идея состоит в следующем.
Имея систему ограничений, приведенную к общему виду, то есть к системе m линейных уравнений с n переменными (m < n), находят любое базисное решение этой системы, заботясь только о том, чтобы найти его как можно проще.
Если первое же найденное базисное решение оказалось допустимым, то проверяют его на оптимальность. Если оно не оптимально, то, осуществляется переход к другому, обязательно допустимому базисному решению.
Симплексный метод гарантирует, что при этом новом решении линейная форма, если и не достигнет оптимума, то приблизится к нему. С новым допустимым базисным решением поступают так же, пока не находят решение, которое является оптимальным.
Если первое найденное базисное решение окажется недопустимым, то с помощью симплексного метода осуществляется переход к другим базисным решениям, которые приближают нас к области допустимых решений, пока на каком-то шаге решения либо базисное решение окажется допустимым и к нему применяют алгоритм симплексного метода, либо мы убеждаемся в противоречивости системы ограничений.
Таким образом, применение симплексного метода распадается на два этапа: нахождение допустимого базисного решения системы ограничений или установление факта ее несовместности; нахождение оптимального решения. При этом каждый этап может включать несколько шагов, соответствующих тому или иному базисному решению. Но так как число базисных решений всегда ограниченно, то ограниченно и число шагов симплексного метода.
Приведенная схема симплексного метода явно выражает его алгоритмический характер (характер четкого предписания о выполнении последовательных операций), что позволяет успешно программировать и реализовать этот метод на ЭВМ. Задачи же с небольшим числом переменных и ограничений могут быть решены симплексным методом вручную.
Не останавливаясь подробнее на сути алгоритма, опишем его вычислительную сторону. Вычисления по симплекс-методу организуются в виде симплекс-таблиц, которые являются сокращенной записью задачи линейного программирования в канонической форме. Перед составлением симплекс-таблицы задача должна быть преобразована, система ограничений приведена к допустимому базисному виду, c помощью которого из целевой функции должны быть исключены базисные переменные. Вопрос об этих предварительных преобразованиях мы рассмотрим ниже. Сейчас же будем считать, что они уже выполнены и задача имеет вид:
Здесь для определенности записи считается, что в качестве базисных переменных можно взять переменные X1, X2, ..., Xr и что при этом b1, b2,..., br ≥ 0 (соответствующее базисное решение является опорным).
Для составления симплекс-таблицы во всех равенствах в условии задачи члены, содержащие переменные, переносятся в левую часть, свободные оставляются справа, т.е. задача записывается в виде системы равенств:
Далее эта система оформляется в виде симплекс-таблиц:
Примечание. Названия базисных переменных здесь взяты лишь для определенности записи и в реальной таблице могут оказаться другими.
Порядок работы с симплекс таблицей
Первая симплекс-таблица подвергается преобразованию, суть которого заключается в переходе к новому опорному решению.
Алгоритм перехода к следующей таблице такой:
• просматривается последняя строка (индексная) таблицы и среди коэффициентов этой строки (исключая столбец свободных членов ) выбирается наименьшее отрицательное число при отыскании max, либо наибольшее положительное при задачи на min. Если такового нет, то исходное базисное решение является оптимальным и данная таблица является последней;
• просматривается столбец таблицы, отвечающий выбранному отрицательному (положительному) коэффициенту в последней строке- ключевой столбец, и в этом столбце выбираются положительные коэффициенты. Если таковых нет, то целевая функция неограниченна на области допустимых значений переменных и задача решений не имеет;
• среди выбранных коэффициентов столбца выбирается тот, для которого абсолютная величина отношения соответствующего свободного члена (находящегося в столбце свободных членов) к этому элементу минимальна. Этот коэффициент называется разрешающим, а строка в которой он находится ключевой;
• в дальнейшем базисная переменная, отвечающая строке разрешающего элемента, должна быть переведена в разряд свободных, а свободная переменная, отвечающая столбцу разрешающего элемента, вводится в число базисных.
Строится новая таблица, содержащая новые названия базисных переменных:
• разделим каждый элемент ключевой строки (исключая столбец свободных членов) на разрешающий элемент и полученные значения запишем в строку с измененной базисной переменной новой симплекс таблицы.
• строка разрешающего элемента делится на этот элемент и полученная строка записывается в новую таблицу на то же место.
• в новой таблице все элементы ключевого столбца = 0, кроме разрезающего, он всегда равен 1.
• столбец, у которого в ключевой строке имеется 0,в новой таблице будет таким же.
• строка, у которой в ключевом столбце имеется 0,в новой таблице будет такой же.
• в остальные клетки новой таблицы записывается результат преобразования элементов старой таблицы:
В результате получают новую симплекс-таблицу, отвечающую новому базисному решению.
Теперь следует просмотреть строку целевой функции (индексную), если в ней нет отрицательных значений (в задачи на нахождение максимального значения), либо положительных (в задачи на нахождение минимального значения) кроме стоящего на месте (свободного столбца), то значит, что оптимальное решение получено. В противном случае, переходим к новой симплекс таблице по выше описанному алгоритму.
- Введение
- Тема 1 Математическое программирование и оптимизация
- 1.1 Эволюция развития математических методов и моделей в экономике
- 1.2 Классификация экономико-математических моделей
- 1.3 Математическое программирование
- 1.4 Оптимизация в математике и ее методы
- 1.5 Метод Монте-Карло
- 1.5.1 Алгоритм Бюффона для определения числа Пи
- 1.5.2 Связь стохастических процессов и дифференциальных уравнений
- 1.5.3 Рождение метода Монте-Карло в Лос-Аламосе
- 1.5.4 Дальнейшее развитие и современность
- 1.5.5 Интегрирование методом Монте-Карло
- 1.5.6 Обычный алгоритм Монте-Карло интегрирования
- 1.5.7 Геометрический алгоритм Монте-Карло интегрирования
- Тема 2 Линейное программирование
- 2.1 Общая задача линейного программирования
- 2.2 Основная задача лп (озлп)
- 2.3 Симплекс-метод линейного программирования
- 2.4 Двойственные задачи линейного программирования
- 2.5 Целочисленное линейное программирование
- 2.6 Параметрическое линейное программирование
- 2.7 Дробно-линейное программирование
- 2.8 Блочное программирование
- 2.9 Теория графов
- 2.10 Транспортная задача
- 2.10.1 Общая характеристика транспортной задачи
- 2.10.2 Математическая модель транспортной задачи
- Тема 3 Нелинейное программирование
- 3.1 Методы нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Сепарабельное программирование
- 3.4 Выпуклое программирование
- 3.5 Квадратичное программирование
- 3.6 Геометрическое программирование
- 3.7 Динамическое программирование
- 3.8 Стохастическое программирование
- Тема 4 Межотраслевой баланс и сетевое моделирование
- 4.1 Задача межотраслевого баланса
- 4.2 Балансовая модель Леонтьева
- 4.3 Модели межотраслевого баланса в планировании инновационных программ
- 4.3.1 Однопродуктовая динамическая макроэкономическая модель
- 1) Открытая однопродуктовая динамическая модель Леонтьева
- 2) Замкнутая однопродуктовая модель Леонтьева
- 4.4 Сетевая модель данных
- 4.4.1 Историческая справка
- 4.4.2 Основные элементы сетевой модели данных
- 4.4.3 Особенности построения сетевой модели данных
- 4.4.4 Операции над данными сетевой модели
- 4.4.5 Использование сетевой модели
- 4.5 Сетевой график
- 4.6 Методика составления сетевого графика
- 5. Задачи оптимального проектирования
- 5.1. Постановка задачи оптимального проектирования
- 5.1.1. Основные понятия и определения
- 5.2. Пример задачи оптимального проектирования
- 5.3. Классификация задач оптимального проектирования
- Первая постановка
- 5.4 Определение уравнений линейной регрессии
- 5.7. Методика получения исходных данных
- 5.3. Решение задач оптимального проектирования
- 5.3.1. Оптимизация параметров изделия