3.5 Квадратичное программирование
Это раздел выпуклого программирования, посвященный теории и методам решения задач минимизации выпуклых квадратичных функций на множествах, задаваемых системами линейных неравенств и равенств. Существует законченная теория Квадратичного программирования, и разработаны численные методы решения задач Квадратичного программирования, в том числе методы типа симплексного метода, приводящие к решению за конечное число шагов (итераций).
В матричной форме задача квадратичного программирования может быть записана следующим образом:
где - вектор неизвестных разметрности , состоящий из элементов ; - матрица коэффициентов размерности ; - вектор коэффициентов размерности ; - матрица ркзметрности ; - вектор-столбец размерности
Задача квадратичного программирования является частным случаем задачи нелинейного программирования, в которой ограничения
являются линейными, а функция представляет собой сумму линейной и квадратичной функции (квадратичной формы)
Как и в общем случае решения задач нелинейного программирования, для определения глобального экстремума задачи квадратичного программирования не существует эффективного вычислительного метода, если не известно, что любой локальный экстремум является одновременно и глобальным. Так как в задаче квадратичного программирования множество допустимых решений выпукло, то, если целевая функция вогнута, любой локальный максимум является глобальным; если же целевая функция ‑ выпуклая, то любой локальный минимум также и глобальный.
Функция представляет собой сумму линейной функции (которая является и выпуклой, и вогнутой) и квадратичной формы. Если последняя является вогнутой (выпуклой), то задачи отыскания максимума (минимума) целевой функции могут быть успешно решены. Вопрос о том, будет ли квадратичная форма вогнутой или выпуклой, зависит от того, является ли она отрицательно-определенной, отрицательно-полуопределенной, положительно-определенной, положительно-полуопределенной или вообще неопределенной.
Реальные задачи технико-экономического содержания, математическими моделями которых являются задачи Квадратичного программирования, немногочисленны. Однако задачи Квадратичного программирования возникают как вспомогательные при решении различных задач математического программирования. Так, в одном из вариантов метода возможных направлений для численного решения задач нелинейного программирования проблему выбора направления спуска на каждой итерации сводят к решению задачи Квадратичного программирования. Задачи безусловной минимизации квадратичных функций, а также задачи Квадратичного программирования с ограничениями простейшего вида (напр., когда ограничениями являются условия неотрицательности переменных) возникают в результате применения метода регуляризации для решения неустойчивых (некорректных) задач линейного программирования и штрафных функций метода для решения задач линейного программирования.
- Введение
- Тема 1 Математическое программирование и оптимизация
- 1.1 Эволюция развития математических методов и моделей в экономике
- 1.2 Классификация экономико-математических моделей
- 1.3 Математическое программирование
- 1.4 Оптимизация в математике и ее методы
- 1.5 Метод Монте-Карло
- 1.5.1 Алгоритм Бюффона для определения числа Пи
- 1.5.2 Связь стохастических процессов и дифференциальных уравнений
- 1.5.3 Рождение метода Монте-Карло в Лос-Аламосе
- 1.5.4 Дальнейшее развитие и современность
- 1.5.5 Интегрирование методом Монте-Карло
- 1.5.6 Обычный алгоритм Монте-Карло интегрирования
- 1.5.7 Геометрический алгоритм Монте-Карло интегрирования
- Тема 2 Линейное программирование
- 2.1 Общая задача линейного программирования
- 2.2 Основная задача лп (озлп)
- 2.3 Симплекс-метод линейного программирования
- 2.4 Двойственные задачи линейного программирования
- 2.5 Целочисленное линейное программирование
- 2.6 Параметрическое линейное программирование
- 2.7 Дробно-линейное программирование
- 2.8 Блочное программирование
- 2.9 Теория графов
- 2.10 Транспортная задача
- 2.10.1 Общая характеристика транспортной задачи
- 2.10.2 Математическая модель транспортной задачи
- Тема 3 Нелинейное программирование
- 3.1 Методы нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Сепарабельное программирование
- 3.4 Выпуклое программирование
- 3.5 Квадратичное программирование
- 3.6 Геометрическое программирование
- 3.7 Динамическое программирование
- 3.8 Стохастическое программирование
- Тема 4 Межотраслевой баланс и сетевое моделирование
- 4.1 Задача межотраслевого баланса
- 4.2 Балансовая модель Леонтьева
- 4.3 Модели межотраслевого баланса в планировании инновационных программ
- 4.3.1 Однопродуктовая динамическая макроэкономическая модель
- 1) Открытая однопродуктовая динамическая модель Леонтьева
- 2) Замкнутая однопродуктовая модель Леонтьева
- 4.4 Сетевая модель данных
- 4.4.1 Историческая справка
- 4.4.2 Основные элементы сетевой модели данных
- 4.4.3 Особенности построения сетевой модели данных
- 4.4.4 Операции над данными сетевой модели
- 4.4.5 Использование сетевой модели
- 4.5 Сетевой график
- 4.6 Методика составления сетевого графика
- 5. Задачи оптимального проектирования
- 5.1. Постановка задачи оптимального проектирования
- 5.1.1. Основные понятия и определения
- 5.2. Пример задачи оптимального проектирования
- 5.3. Классификация задач оптимального проектирования
- Первая постановка
- 5.4 Определение уравнений линейной регрессии
- 5.7. Методика получения исходных данных
- 5.3. Решение задач оптимального проектирования
- 5.3.1. Оптимизация параметров изделия