1.5.5 Интегрирование методом Монте-Карло
Рисунок 2. Численное интегрирование функции детерминистическим методом
Предположим, необходимо взять интеграл от некоторой функции. Воспользуемся неформальным геометрическим описанием интеграла и будем понимать его как площадь под графиком этой функции.
Для определения этой площади можно воспользоваться одним из обычных численных методов интегрирования: разбить отрезок на подотрезки, подсчитать площадь под графиком функции на каждом из них и сложить. Предположим, что для функции, представленной на рисунке 2, достаточно разбиения на 25 отрезков и, следовательно, вычисления 25 значений функции. Представим теперь, мы имеем дело с n-мерной функцией. Тогда нам необходимо 25n отрезков и столько же вычислений значения функции. При размерности функции больше 10 задача становится огромной. Поскольку пространства большой размерности встречаются, в частности, в задачах теории струн, а также многих других физических задачах, где имеются системы со многими степенями свободы, необходимо иметь метод решения, вычислительная сложность которого бы не столь сильно зависела от размерности. Именно таким свойством обладает метод Монте-Карло.
- Введение
- Тема 1 Математическое программирование и оптимизация
- 1.1 Эволюция развития математических методов и моделей в экономике
- 1.2 Классификация экономико-математических моделей
- 1.3 Математическое программирование
- 1.4 Оптимизация в математике и ее методы
- 1.5 Метод Монте-Карло
- 1.5.1 Алгоритм Бюффона для определения числа Пи
- 1.5.2 Связь стохастических процессов и дифференциальных уравнений
- 1.5.3 Рождение метода Монте-Карло в Лос-Аламосе
- 1.5.4 Дальнейшее развитие и современность
- 1.5.5 Интегрирование методом Монте-Карло
- 1.5.6 Обычный алгоритм Монте-Карло интегрирования
- 1.5.7 Геометрический алгоритм Монте-Карло интегрирования
- Тема 2 Линейное программирование
- 2.1 Общая задача линейного программирования
- 2.2 Основная задача лп (озлп)
- 2.3 Симплекс-метод линейного программирования
- 2.4 Двойственные задачи линейного программирования
- 2.5 Целочисленное линейное программирование
- 2.6 Параметрическое линейное программирование
- 2.7 Дробно-линейное программирование
- 2.8 Блочное программирование
- 2.9 Теория графов
- 2.10 Транспортная задача
- 2.10.1 Общая характеристика транспортной задачи
- 2.10.2 Математическая модель транспортной задачи
- Тема 3 Нелинейное программирование
- 3.1 Методы нелинейного программирования
- 3.2 Метод множителей Лагранжа
- 3.3 Сепарабельное программирование
- 3.4 Выпуклое программирование
- 3.5 Квадратичное программирование
- 3.6 Геометрическое программирование
- 3.7 Динамическое программирование
- 3.8 Стохастическое программирование
- Тема 4 Межотраслевой баланс и сетевое моделирование
- 4.1 Задача межотраслевого баланса
- 4.2 Балансовая модель Леонтьева
- 4.3 Модели межотраслевого баланса в планировании инновационных программ
- 4.3.1 Однопродуктовая динамическая макроэкономическая модель
- 1) Открытая однопродуктовая динамическая модель Леонтьева
- 2) Замкнутая однопродуктовая модель Леонтьева
- 4.4 Сетевая модель данных
- 4.4.1 Историческая справка
- 4.4.2 Основные элементы сетевой модели данных
- 4.4.3 Особенности построения сетевой модели данных
- 4.4.4 Операции над данными сетевой модели
- 4.4.5 Использование сетевой модели
- 4.5 Сетевой график
- 4.6 Методика составления сетевого графика
- 5. Задачи оптимального проектирования
- 5.1. Постановка задачи оптимального проектирования
- 5.1.1. Основные понятия и определения
- 5.2. Пример задачи оптимального проектирования
- 5.3. Классификация задач оптимального проектирования
- Первая постановка
- 5.4 Определение уравнений линейной регрессии
- 5.7. Методика получения исходных данных
- 5.3. Решение задач оптимального проектирования
- 5.3.1. Оптимизация параметров изделия