logo search
Вышка

Решение квадратных уравнений

Одна из причин введения комплексных чисел состояла в том, чтобы добиться разрешимости любого квадратного уравнения, в частности уравнения

x2 = – 1.

Покажем, что расширив поле действительных чисел до поля комплексных чисел, мы получили поле, в котором каждое квадратное уравнение разрешимо, т.е. имеет решение. Так, уравнение x2 = – 1 имеет два решения:   x1 = i, x2 = – i.

Это нетрудно установить проверкой:    i•i = i2 = – 1, (– i)•(– i) = i2 = – 1.

Перейдем теперь к вопросу о решении полного квадратного уравнения. Квадратным уравнением называют уравнение вида:

ax2 + bx + c = 0 (a  0),

где x – неизвестная, a, b, c – действительные числа, соответственно первый, второй коэффициенты и свободный член, причем a  0. Решим это уравнение, выполнив над ним ряд несложных преобразований.

· Разделим все члены уравнения на a  0 и перенесем свободный член в правую часть уравнения:  

Теперь можно исследовать полученное решение. Оно зависит от значения подкоренного выражения, называемого дискриминантом квадратного уравнения. Если  b2 – 4ac > 0, то  есть действительное число и квадратное уравнение имеет действительные корни. Если же  – мнимое число, квадратное уравнение имеет мнимые корни.

Результаты исследования представлены ниже в таблице:

Итак, введение комплексных чисел позволяет разработать полную теорию квадратных уравнений. В поле комплексных чисел разрешимо любое квадратное уравнение.

Примеры.

1. Решите уравнение x2 – 2x – 8 = 0.

Решение. Найдем дискриминант  D = b2 – 4ac = (– 2)2 – 4•1•(– 8) = 36 > 0.

Уравнение имеет два действительных корня:  

2. Решите уравнение x2 + 6x + 9 = 0.

Решение. D = 62 – 4•1•9 = 0, уравнение имеет два равных действительных корня: 

3. Решите уравнение x2 – 4x + 5 = 0.

Решение. D = 16 – 4•1•5 = – 4 < 0, уравнение имеет мнимые корни: