46. Компьютерная графика. Различные методы и технологии реализации.
Компью́терная гра́фика (также маши́нная графика) — область деятельности, в которой компьютеры используются в качестве инструмента, как для синтеза (создания) изображений, так и для обработки визуальной информации, полученной из реального мира.
Основные области применения
Научная графика — первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства — графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.
Деловая графика — область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчётная документация, статистические сводки — вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.
Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трёхмерные изображения.
Иллюстративная графика — это произвольное рисование и черчение на экране компьютера. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.
Художественная и рекламная графика — ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и «движущихся картинок». Получение рисунков трёхмерных объектов, их повороты, приближения, удаления, деформации связано с большим объёмом вычислений. Передача освещённости объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчётов, учитывающих законы оптики.
Компьютерная анимация — это получение движущихся изображений на экране дисплея. Художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчёты, опирающиеся на математическое описание данного вида движения. Полученные рисунки, выводимые последовательно на экран с определённой частотой, создают иллюзию движения.
Мультимедиа — это объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.
По способам задания изображений графику можно разделить на категории:
Двухмерная графика
Двухмерная (2D — от англ. two dimensions — «два измерения») компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую, хотя обособляют ещё и фрактальный тип представления изображений.
Векторная графика
Векторная графика представляет изображение как набор геометрических примитивов. Обычно в качестве них выбираются точки, прямые, окружности, прямоугольники, а также, как общий случай, кривые некоторого порядка. Объектам присваиваются некоторые атрибуты, например, толщина линий, цвет заполнения. Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов. При воспроизведении перекрывающихся объектов имеет значение их порядок.
Изображение в векторном формате даёт простор для редактирования. Изображение может без потерь масштабироваться, поворачиваться, деформироваться, также имитация трёхмерности в векторной графике проще, чем в растровой. Дело в том, что каждое такое преобразование фактически выполняется так: старое изображение (или фрагмент) стирается, и вместо него строится новое. Математическое описание векторного рисунка остаётся прежним, изменяются только значения некоторых переменных, например, коэффициентов.
При преобразовании растровой картинки исходными данными является только описание набора пикселей, поэтому возникает проблема замены меньшего числа пикселей на большее (при увеличении, или большего на меньшее (при уменьшении). Простейшим способом является замена одного пикселя несколькими того же цвета (метод копирования ближайшего пикселя: Nearest Neighbour). Более совершенные методы используют алгоритмы интерполяции, при которых новые пиксели получают некоторый цвет, код которого вычисляется на основе кодов цветов соседних пикселей. Подобным образом выполняется масштабирование в программе Adobe Photoshop (билинейная и бикубическая интерполяция).
Вместе с тем, не всякое изображение можно представить как набор из примитивов. Такой способ представления хорош для схем, используется для масштабируемых шрифтов, деловой графики, очень широко используется для создания мультфильмов и просто роликов разного содержания.
Растровая графика
Растровая графика всегда оперирует двумерным массивом (матрицей) пикселей. Каждому пикселю сопоставляется значение яркости, цвета, прозрачности — или комбинация этих значений. Растровый образ имеет некоторое число строк и столбцов.
Без особых потерь растровые изображения можно только лишь уменьшать, хотя некоторые детали изображения тогда исчезнут навсегда, что иначе в векторном представлении. Увеличение же растровых изображений оборачивается «красивым» видом на увеличенные квадраты того или иного цвета, которые раньше были пикселями.
В растровом виде представимо любое изображение, однако этот способ хранения имеет свои недостатки: больший объём памяти, необходимый для работы с изображениями, потери при редактировании.
Фрактальная графика
Фрактал — объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.
Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти. С другой стороны, фракталы слабо применимы к изображениям вне этих классов.
Трёхмерная графика
Трёхмерная графика (3D — от англ. three dimensions — «три измерения») оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.
Трехмерная графика бывает полигональной и воксельной. Воксельная графика, аналогична растровой. Объект состоит из набора трехмерных фигур, чаще всего кубов. А в полигональной компьютерной графике все объекты обычно представляются как набор поверхностей, минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.
Всеми визуальными преобразованиями в векторной (полигональной) 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:
матрица поворота
матрица сдвига
матрица масштабирования
Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/масштабированный относительно исходного.
Ежегодно проходят конкурсы трёхмерной графики, такие как Magick next-gen или Dominance War.
CGI графика
CGI (англ. computer-generated imagery, букв. «изображения, созданное компьютером») — изображения, получаемые компьютером на основе расчета и использующиеся в изобразительном искусстве, печати, кинематографических спецэффектах, нателевидении и в симуляторах. Созданием движущихся изображений занимается компьютерная анимация, представляющая собой более узкую область графики CGI.
Представление цветов в компьютере
Для передачи и хранения цвета в компьютерной графике используются различные формы его представления. В общем случае цвет представляет собой набор чисел, координат в некоторой цветовой системе.
Стандартные способы хранения и обработки цвета в компьютере обусловлены свойствами человеческого зрения. Наиболее распространены системы RGB для дисплеев и CMYK для работы в типографском деле.
Иногда используется система с большим, чем три, числом компонент. Кодируется спектр отражения или испускания источника, что позволяет более точно описать физические свойства цвета. Такие схемы используются в фотореалистичном трёхмерном рендеринге.
Реальная сторона графики
Любое изображение на мониторе, в силу его плоскости, становится растровым, так как монитор это матрица, он состоит из столбцов и строк. Трёхмерная графика существует лишь в нашем воображении, так как то, что мы видим на мониторе — это проекция трёхмерной фигуры, а уже создаём пространство мы сами. Таким образом, визуализация графики бывает только растровая и векторная, а способ визуализации это только растр (набор пикселей), а от количества этих пикселей зависит способ задания изображения.
В эпоху самых первых графических дисплеев (мониторов) существовали ЭЛТ-дисплеи без растра, с управлением электронным лучом по типу осциллографа. Фигуры, выводимые такими дисплеями были в чистом виде векторными. По мере развития программного обеспечения и усложнения решаемых задач графические дисплеи такого типа были признаны бесперспективными, т.к. не позволяли формировать достаточно сложные изображения. Похожий принцип формирования изображения используется в векторных графопостроителях. Разница в том, что на векторном дисплее сложность картинки ограничена временем послесвечения люминофора, а на векторном плоттере такого ограничения нет.
- Процессы жизненного цикла систем (на основе iso/iec 15288)
- Структура и функциональное назначение процессов жизненного цикла программных средств (на основе iso/iec 12207)
- Модель качества и критерии качества программных средств (на основе iso/iec 9126 и iso/iec 25010)
- Оценка зрелости процессов создания и сопровождения программных средств на основе методологии cmm и cmmi (на основе iso/iec 15504)
- Система менеджмента информационной безопасности (на основе серии iso/iec 27000)
- Методы кодирования текстовой, графической и звуковой информации в эвм. Аналоговые, дискретные и цифровые сигналы
- История создания, принципы работы и основные сервисы сети Интернет.
- Представление данных в эвм. Единицы измерения информации. Двоичные приставки по гост 8.417-2002 и iec 80000-13.
- Принципы и архитектура фон Неймана.
- Порядок обработки команд микропроцессором. Прерывания. Типы прерываний.
- Поколения эвм. Основные особенности.
- I Поколение 50-60-е гг.
- II Поколение 60-70-е гг.
- III Поколение 70-80-е гг.
- IV Поколение 80-е (по наши дни?).
- Классификация запоминающих устройств в эвм. Современные реализации запоминающих устройств.
- 13. Алгебра логики. Основные законы алгебры логики. Применение алгебры логики в информатике.
- 14. Понятие алгоритма. Методы оценки алгоритмической сложности.
- 15. Понятие системы. Системный анализ. Применение системнго анализа в информатике.
- 16. Теория формальных грамматик. Основные понятия и положения. Применение в информатике.
- 17. Теория вероятностей. Основные понятия и положения. Применение в информатике.
- 18. Математические методы оптимизации и их применение в информатике.
- 19. Понятие компьютерного моделирования. Вычислительный эксперимент.
- 20. Структурное программирование. Понятия и принципы.
- 21. Объектно-ориентированное программирование. Понятия и принципы.
- 22. Декларативные языки программирования и их сфера применения.
- 23. Событийно-ориентированное программирование.
- 24. Многопоточное программирование. Процесс и поток выполнения. Средства синхронизации потоков.
- 25. Основные алгоритмы и структуры данных, применяемые в вычислительных системах.
- 26. Приёмы (шаблоны) объектно-ориентированного программирования.
- 27. Теория графов. Основные понятия. Решаемые задачи.
- 28. Средства моделирования при разработке программного обеспечения.
- 29. Инструментальные средства разработки программного обеспечения.
- 30.Методологии разработки программного обеспечения. Классификация. Особенности применения.
- 31. Программные средства для организации совместной разработки программного обеспечения.
- 32. Программный продукт. Жизненный цикл программного продукта.
- 4.1.1.1 Основные процессы жизненного цикла
- 5. Вспомогательные процессы жизненного цикла по гост р исо/мэк 12207-99.
- 4.1.1.2 Вспомогательные процессы жизненного цикла
- 33. Бизнес-процесс. Средства анализа и моделирования. Автоматизация бизнес-процессов.
- 34. Архитектура вычислительной системы, разновидности.
- 35. Аппаратное обеспечение вычислительных систем.
- 36. Архитектура вычислительной сети.
- 37. Виртуализация вычислительных ресурсов. "Облачные" вычисления.
- 38. Способы реализации человеко-машинного взаимодействия.
- 39. Принципы защиты информации в вычислительных системах и сетях.
- 40. Операционная система. Понятие и основные задачи. Классификация операционных систем.
- 41. Файловая система и принципы построения и основные функции.
- 42. Понятие машинного обучения и искусственного интеллекта. Решаемые задачи.
- 43. Методы сжатия графической информации. Области применения различных методов.
- 44. Методы сжатия звуковой информации. Области применения различных методов.
- 45. Понятие виртуальной и дополненной реальности. Средства реализации.
- 46. Компьютерная графика. Различные методы и технологии реализации.
- 47. Системы управления базами данных, разновидности.
- 48. Принципы построения реляционных баз данных. Нормализация данных.
- 49. Распределённые базы данных. Принципы построения и решаемые задачи.
- 50. Понятие открытой вычислительной системы. Классификация. Принципы построения.
- 51. Методы анализа информационных систем
- 52. Средства мониторинга сетевого трафика
- 53. Метод Монте-Карло. Принципы построения моделей для анализа эффективности информационных систем (основа построения, достоинства и недостатки).
- 54. Методы управления сетью: коммутация каналов, коммутация пакетов.
- 55. Методы балансировки трафика
- 56. Семиуровневая модель osi
- 57. Локальные вычислительные сети (топология, методы доступа)
- 58. Методы повышения достоверности при передаче информации
- 59. Понятие качества обслуживания в компьютерных сетях. Средства обеспечения качества обслуживания.
- 60. Назначение и принцип работы интернет сети
- 61. Основные протоколы сети Интернет, их назначение.
- 62. Понятие dns. Структура доменных имен в сети Интернет.
- 63. Понятие стека протоколов. Стек протоколов tcp/ip, udp/ip.
- 64. Системы автоматизированного проектирования (сапр).
- 70. Принципы построения распределенных информационных систем. Промежуточное программное обеспечение для обработки сообщений.
- 71. Сервисно-ориентированная архитектура распределённых приложений. Основные протоколы.
- 72. Корпоративные информационные системы (класс erp). Разновидности. Решаемые задачи.
- 73. Развитие новых информационно-коммуникационных технологий как база становления информационного общества
- 74. Модели жизненного цикла программного обеспечения
- 6. Модели жц программного продукта: каскадная.
- 7. Модели жц программного продукта: итерационная.
- 8. Модели жц программного продукта: спиральная (быстрого прототипирования).
- 75. Основные принципы структурного анализа систем
- 76. Консалтинг в области информационных технологий
- 77. Методика проведения обследования объектов автоматизации
- 78. Методы построения и анализа моделей деятельности предприятия
- 79. Структурно-функциональные модели
- 80. Модели потоков данных (dfd)
- 81. Модели "сущность-связь" (erd)
- 83. Объектно-ориентированный язык визуального моделирования uml
- 84. Методология rup: назначение и основные характеристики
- 85. Диаграммы вариантов использования (use-cases diagram)
- 86. Диаграммы классов (class diagram). Основные объекты диаграммы
- 87. Диаграммы деятельности (activity diagram). Основные объекты диаграммы
- 88. Диаграммы последовательности (sequence diagramm)
- 19. Uml: диаграмма состояний.