30.Методологии разработки программного обеспечения. Классификация. Особенности применения.
Методология — это система принципов, а также совокупность идей, понятий, методов, способов и средств, определяющих стиль разработки программного обеспечения.
Методология — это реализация стандарта. Сами стандарты лишь говорят о том, что должно быть, оставляя свободу выбора и адаптации.
Конкретные вещи реализуется через выбранную методологию. Именно она определяет, как будет выполняться разработка. Существует много успешных методологий создания программного обеспечения. Выбор конкретной методологии зависит от размера команды, от специфики и сложности проекта, от стабильности и зрелости процессов в компании и от личных качеств сотрудников.
Методологии представляют собой ядро теории управления разработкой программного обеспечения. К существующей классификации в зависимости от используемой в ней модели жизненного цикла (водопадные и итерационные методологии) добавилась более общая классификация на прогнозируемы и адаптивные методологии.
Прогнозируемые методологии фокусируются на детальном планировании будущего. Известны запланированные задачи и ресурсы на весь срок проекта. Команда с трудом реагирует на возможные изменения. План оптимизирован исходя из состава работ и существующих требований. Изменение требований может привести к существенному изменению плана, а также дизайна проекта. Часто создается специальный комитет по «управлению изменениями», чтобы в проекте учитывались только самые важные требования.
Адаптивные методологии нацелены на преодоление ожидаемой неполноты требований и их постоянного изменения. Когда меняются требования, команда разработчиков тоже меняется. Команда, участвующая в адаптивной разработке, с трудом может предсказать будущее проекта. Существует точный план лишь на ближайшее время. Более удаленные во времени планы существуют лишь как декларации о целях проекта, ожидаемых затратах и результатах.
SCRUM — методология, предназначенная для небольших команд (до 10 человек). Весь проект делится на итерации (спринты) продолжительностью 30 дней каждый. Выбирается список функций системы, которые планируется реализовать в течение следующего спринта. Самые важные условия — неизменность выбранных функций во время выполнения одной итерации и строгое соблюдение сроков выпуска очередного релиза, даже если к его выпуску не удастся реализовать весь запланированный функционал. Руководитель разработки проводит ежедневные 20 минутные совещания, которые так и называют — scrum, результатом которых является определение функции системы, реализованных за предыдущий день, возникшие сложности и план на следующий день. Такие совещания позволяют постоянно отслеживать ход проекта, быстро выявлять возникшие проблемы и оперативно на них реагировать.
KANBAN – гибкая методология разработки программного обеспечения, ориентированная на задачи.
Основные правила:
визуализация разработки:
разделение работы на задачи;
использование отметок о положение задачи в разработке;
ограничение работ, выполняющихся одновременно, на каждом этапе разработки;
измерение времени цикла (среднее время на выполнение одной задачи) и оптимизация процесса.
Преимущества KANBAN:
уменьшение числа параллельно выполняемых задач значительно уменьшает время выполнения каждой отдельной задачи;
быстрое выявление проблемных задач;
вычисление времени на выполнение усредненной задачи.
DYNAMIC SYSTEM DEVELOPMENT METHOD появился в результате работы консорциум из 17 английских компаний. Целая организация занимается разработкой пособий по этой методологии, организацией учебных курсов, программ аккредитации и т.п. Кроме того, ценность DSDM имеет денежный эквивалент.
Все начинается с изучения осуществимости программы и области ее применения. В первом случае, вы пытаетесь понять, подходит ли DSDM для данного проекта. Изучать область применения программы предполагается на короткой серии семинаров, где программисты узнают о той сфере бизнеса, для которой им предстоит работать. Здесь же обсуждаются основные положения, касающиеся архитектуры будущей системы и план проекта.
Далее процесс делится на три взаимосвязанных цикла: цикл функциональной модели отвечает за создание аналитической документации и прототипов, цикл проектирования и конструирования — за приведение системы в рабочее состояние, и наконец, последний цикл — цикл реализации — обеспечивает развертывание программной системы.
Базовые принципы, на которых строится DSDM, это активное взаимодействие с пользователями, частые выпуски версий, самостоятельность разработчиков в принятии решений и тестирование в течение всего цикла работ. Как и большинство других гибких методологий, DSDM использует короткие итерации, продолжительностью от двух до шести недель каждая. Особый упор делается на высоком качестве работы и адаптируемости к изменениям в требованиях.
MICROSOFT SOLUTIONS FRAMEWORK — методология разработки программного обеспечения, предложенная корпорацией Microsoft. MSF опирается на практический опыт Microsoft и описывает управление людьми и рабочими процессами в процессе разработки решения. Базовые концепции и принципы модели процессов MSF:
единое видение проекта — все заинтересованные лица и просто участники проекта должны чётко представлять конечный результат, всем должна быть понятна цель проекта;
управление компромиссами — поиск компромиссов между ресурсами проекта, календарным графиком и реализуемыми возможностями;
гибкость – готовность к изменяющимся проектным условиям;
концентрация на бизнес-приоритетах — сосредоточенность на той отдаче и выгоде, которую ожидает получить потребитель решения;
поощрение свободного общения внутри проекта;
создание базовых версии — фиксация состояния любого проектного артефакта, в том числе программного кода, плана проекта, руководства пользователя, настройки серверов и последующее эффективное управление изменениями, аналитика проекта.
MSF предлагает проверенные методики для планирования, проектирования, разработки и внедрения успешных IT-решений. Благодаря своей гибкости, масштабируемости и отсутствию жестких инструкций MSF способен удовлетворить нужды организации или проектной группы любого размера. Методология MSF состоит из принципов, моделей и дисциплин по управлению персоналом, процессами, технологическими элементами и связанными со всеми этими факторами вопросами, характерными для большинства проектов. RATIONAL UNIFIED PROCESS — методология разработки программного обеспечения, созданная компанией Rational Software. В основе методологии лежат 6 основных принципов:
компонентная архитектура, реализуемая и тестируемая на ранних стадиях проекта;
работа над проектом в сплочённой команде, ключевая роль в которой принадлежит архитекторам;
ранняя идентификация и непрерывное устранение возможных рисков;
концентрация на выполнении требований заказчиков к исполняемой программе;
ожидание изменений в требованиях, проектных решениях и реализации в процессе разработки;
постоянное обеспечение качества на всех этапах разработки проекта.
Использование методологии RUP направлено на итеративную модель разработки. Особенность методологии состоит в том, что степень формализации может меняться в зависимости от потребностей проекта. Можно по окончании каждого этапа и каждой итерации создавать все требуемые документы и достигнуть максимального уровня формализации, а можно создавать только необходимые для работы документы, вплоть до полного их отсутствия. За счет такого подхода к формализации процессов методология является достаточно гибкой и широко популярной. Данная методология применима как в небольших и быстрых проектах, где за счет отсутствия формализации требуется сократить время выполнения проекта и расходы, так и в больших и сложных проектах, где требуется высокий уровень формализма, например, с целью дальнейшей сертификации продукта. Это преимущество дает возможность использовать одну и ту же команду разработчиков для реализации различных по объему и требованиям.
Таким образом, существует множество различных методологий разработки программного обеспечения, они не универсальны и описываются различными принципами. Выбор методологии разработки для конкретного проекта зависит от предъявляемых требований.
- Процессы жизненного цикла систем (на основе iso/iec 15288)
- Структура и функциональное назначение процессов жизненного цикла программных средств (на основе iso/iec 12207)
- Модель качества и критерии качества программных средств (на основе iso/iec 9126 и iso/iec 25010)
- Оценка зрелости процессов создания и сопровождения программных средств на основе методологии cmm и cmmi (на основе iso/iec 15504)
- Система менеджмента информационной безопасности (на основе серии iso/iec 27000)
- Методы кодирования текстовой, графической и звуковой информации в эвм. Аналоговые, дискретные и цифровые сигналы
- История создания, принципы работы и основные сервисы сети Интернет.
- Представление данных в эвм. Единицы измерения информации. Двоичные приставки по гост 8.417-2002 и iec 80000-13.
- Принципы и архитектура фон Неймана.
- Порядок обработки команд микропроцессором. Прерывания. Типы прерываний.
- Поколения эвм. Основные особенности.
- I Поколение 50-60-е гг.
- II Поколение 60-70-е гг.
- III Поколение 70-80-е гг.
- IV Поколение 80-е (по наши дни?).
- Классификация запоминающих устройств в эвм. Современные реализации запоминающих устройств.
- 13. Алгебра логики. Основные законы алгебры логики. Применение алгебры логики в информатике.
- 14. Понятие алгоритма. Методы оценки алгоритмической сложности.
- 15. Понятие системы. Системный анализ. Применение системнго анализа в информатике.
- 16. Теория формальных грамматик. Основные понятия и положения. Применение в информатике.
- 17. Теория вероятностей. Основные понятия и положения. Применение в информатике.
- 18. Математические методы оптимизации и их применение в информатике.
- 19. Понятие компьютерного моделирования. Вычислительный эксперимент.
- 20. Структурное программирование. Понятия и принципы.
- 21. Объектно-ориентированное программирование. Понятия и принципы.
- 22. Декларативные языки программирования и их сфера применения.
- 23. Событийно-ориентированное программирование.
- 24. Многопоточное программирование. Процесс и поток выполнения. Средства синхронизации потоков.
- 25. Основные алгоритмы и структуры данных, применяемые в вычислительных системах.
- 26. Приёмы (шаблоны) объектно-ориентированного программирования.
- 27. Теория графов. Основные понятия. Решаемые задачи.
- 28. Средства моделирования при разработке программного обеспечения.
- 29. Инструментальные средства разработки программного обеспечения.
- 30.Методологии разработки программного обеспечения. Классификация. Особенности применения.
- 31. Программные средства для организации совместной разработки программного обеспечения.
- 32. Программный продукт. Жизненный цикл программного продукта.
- 4.1.1.1 Основные процессы жизненного цикла
- 5. Вспомогательные процессы жизненного цикла по гост р исо/мэк 12207-99.
- 4.1.1.2 Вспомогательные процессы жизненного цикла
- 33. Бизнес-процесс. Средства анализа и моделирования. Автоматизация бизнес-процессов.
- 34. Архитектура вычислительной системы, разновидности.
- 35. Аппаратное обеспечение вычислительных систем.
- 36. Архитектура вычислительной сети.
- 37. Виртуализация вычислительных ресурсов. "Облачные" вычисления.
- 38. Способы реализации человеко-машинного взаимодействия.
- 39. Принципы защиты информации в вычислительных системах и сетях.
- 40. Операционная система. Понятие и основные задачи. Классификация операционных систем.
- 41. Файловая система и принципы построения и основные функции.
- 42. Понятие машинного обучения и искусственного интеллекта. Решаемые задачи.
- 43. Методы сжатия графической информации. Области применения различных методов.
- 44. Методы сжатия звуковой информации. Области применения различных методов.
- 45. Понятие виртуальной и дополненной реальности. Средства реализации.
- 46. Компьютерная графика. Различные методы и технологии реализации.
- 47. Системы управления базами данных, разновидности.
- 48. Принципы построения реляционных баз данных. Нормализация данных.
- 49. Распределённые базы данных. Принципы построения и решаемые задачи.
- 50. Понятие открытой вычислительной системы. Классификация. Принципы построения.
- 51. Методы анализа информационных систем
- 52. Средства мониторинга сетевого трафика
- 53. Метод Монте-Карло. Принципы построения моделей для анализа эффективности информационных систем (основа построения, достоинства и недостатки).
- 54. Методы управления сетью: коммутация каналов, коммутация пакетов.
- 55. Методы балансировки трафика
- 56. Семиуровневая модель osi
- 57. Локальные вычислительные сети (топология, методы доступа)
- 58. Методы повышения достоверности при передаче информации
- 59. Понятие качества обслуживания в компьютерных сетях. Средства обеспечения качества обслуживания.
- 60. Назначение и принцип работы интернет сети
- 61. Основные протоколы сети Интернет, их назначение.
- 62. Понятие dns. Структура доменных имен в сети Интернет.
- 63. Понятие стека протоколов. Стек протоколов tcp/ip, udp/ip.
- 64. Системы автоматизированного проектирования (сапр).
- 70. Принципы построения распределенных информационных систем. Промежуточное программное обеспечение для обработки сообщений.
- 71. Сервисно-ориентированная архитектура распределённых приложений. Основные протоколы.
- 72. Корпоративные информационные системы (класс erp). Разновидности. Решаемые задачи.
- 73. Развитие новых информационно-коммуникационных технологий как база становления информационного общества
- 74. Модели жизненного цикла программного обеспечения
- 6. Модели жц программного продукта: каскадная.
- 7. Модели жц программного продукта: итерационная.
- 8. Модели жц программного продукта: спиральная (быстрого прототипирования).
- 75. Основные принципы структурного анализа систем
- 76. Консалтинг в области информационных технологий
- 77. Методика проведения обследования объектов автоматизации
- 78. Методы построения и анализа моделей деятельности предприятия
- 79. Структурно-функциональные модели
- 80. Модели потоков данных (dfd)
- 81. Модели "сущность-связь" (erd)
- 83. Объектно-ориентированный язык визуального моделирования uml
- 84. Методология rup: назначение и основные характеристики
- 85. Диаграммы вариантов использования (use-cases diagram)
- 86. Диаграммы классов (class diagram). Основные объекты диаграммы
- 87. Диаграммы деятельности (activity diagram). Основные объекты диаграммы
- 88. Диаграммы последовательности (sequence diagramm)
- 19. Uml: диаграмма состояний.