М_М_К_3
Центральная предельная теорема (цпт)
В теории вероятностей существует ряд предельных теорем, указывающих условия, при выполнении которых распределение вероятностей нормированных сумм случайных величин сходится к нормальному (гауссовскому) распределению. Рассмотрим одну из них.
Пусть количество успехов в испытаниях Бернулли и - вероятность успеха в одном испытании, тогда по интегральной теореме Муавра-Лапласа для любого c < d имеет место
.
Здесь , где .
Легко видеть, что
,
где , тогда формулировка интегральной теоремы Муавра-Лапласа может быть переписана в новых обозначениях так:
При любых конечных значениях c < d имеет место
(1.26)
Содержание
- Глава I. Метод Монте-Карло и Понятия теории вероятностей
- Классификация вероятностно-статистических методов решения прикладных задач
- §1.2. Некоторые понятия и теоремы теории вероятностей
- Понятия теории вероятностей
- 1.2.2. Основные теоремы теории вероятностей 4
- Локальная теорема
- Интегральная теорема
- Закон Больших Чисел
- Центральная предельная теорема (цпт)
- Эта теорема носит название «Центральная предельная теорема» .
- 1.2.3. Оценка погрешности математического ожидания исследуемой величины
- 1.3. Генераторы, алгоритмы получения и преобразования случайных чисел
- 1.3.1. Получение случайных чисел с помощью случайного эксперимента
- 1.3.2. Алгоритмы получения псевдослучайных чисел 5
- 1.3.3. Понятие эталонной 6, случайной величины
- 1.3.4. Преобразование случайных величин 7
- 1.3.5. Генераторы псевдослучайных чисел на эвм
- 1.3.6. Использование таблицы дискретных случайных чисел
- 1.4. Недостатки и достоинства аналитических, приближенных методов решения математических задач, в том числе и метода Монте-Карло
- Глава II. Вероятностное моделирование математических задач
- 2.1. Общая теория решения системы линейных уравнений 8
- 2.2. Вычисление интегралов способом среднего
- Технология вычисления интеграла способом среднего
- Нахождение определенных интегралов способом «зонтика» Неймана
- 4. Задания на моделирование
- 2.4. Вычисление значения числа
- 2.5. Решение уравнений эллиптического типа (задача Дирихле)
- Глава III. Имитационное моделирование физических процессов и явлений
- 3.1. Имитационное моделирование задач нейтронной физики
- 3.1.1. Задача имитационного моделирования прохождения нейтронов через пластинку
- 3.1.2. Моделирование сорта ядра и вида взаимодействия нейтрона с ядром
- 3.1.3. Решение задачи розыгрыша типа взаимодействия и сорта ядра имитационным моделированием
- 1. Вычисление микросечений водорода
- 2. Вычисление микросечений кислорода
- 3. Вычисление микросечений бора
- 4. Вычисление полного микросечения
- 5.Розыгрыш сорта ядра
- 6. Розыгрыш типа взаимодействия
- 7.Определение полного макросечения
- 3.1.4. Определение направления и энергии частиц после рассеяния
- 3.1.5. Моделирование длины свободного пробега
- 3.1.6. Имитационное моделирование траектории движения нейтронов через пластинку (двухмерный случай)
- 5. Задания на моделирование:
- 3.2. Имитационное моделирование прохождения
- 6. Задания на моделирование:
- 7. Результаты моделирования
- 3.3. Имитационное моделирование распространения упругих волн в пористых средах (задача геофизики)
- Результаты моделирования
- 3.4. Имитационное моделирование явления спонтанного излучения атомов
- 3. Задания на моделирование:
- Моделирование явления спонтанного излучения многоатомной системы (сверхизлучения Дике)
- 2. Задания на моделирование:
- Глава IV. Методы компьютерного моделирования в термодинамике
- 4.1. Метод молекулярной динамики
- 6. Задания на моделирование:
- 7. Результаты моделирования
- 4.2. Метод броуновской динамики
- 2. Алгоритм метода броуновской динамики
- 3. Расчет макроскопических параметров
- 4. Задания на моделирование:
- 4. 3. Имитационный метод моделирования броуновских траекторий
- Литература