4.2. Метод броуновской динамики
Методами Монте-Карло иногда принято называть группу методов решения детерминированных (т.е. без случайности) задач, в которых существенно используются элементы случайности. Кроме того, существует множество задач, в которых случайный элемент присутствует естественным образом. Универсальность метода как метода математического моделирования прикладных задач определяется возможностью его использования в решении задач, не связанных со случайностью. Это достигается построением вспомогательных вероятностных моделей, куда в качестве параметров входят подлежащие определению постоянные величины.
1. Математическая модель. В методе броуновской динамики систему можно представить в виде набора частиц, динамически взаимодействующих между собой и стохастически с окружающей средой, детальное строение которой несущественно, т.е. движение частиц в растворе или расплаве сводится к движению частиц в непрерывной вязкой среде. Свойства этой непрерывной среды задаются случайной силой с заданными статистическими свойствами. Метод броуновской динамики рассчитывает в фазовом пространстве траектории молекул, движение каждой из которых в поле силы описывается уравнением Ланжевена
, (4.20а)
, , (4.20б)
где - набор межчастичных расстояний, - коэффициент трения броуновских частиц в поле окружающей среды, - случайная сила ланжевеновского источника, - сила взаимодействия - й частицы с остальными броуновскими частицами
. (4.21)
Метод броуновской динамики использует случайные силы . Поэтому для его реализации необходимо уметь получать случайные величины , обычно распределенные по нормальному закону с дисперсией d = 1
, . (4.22)
Для нашей задачи случайная сила равна
Если дисперсия d задана, то плотность вероятности определяется как
, (4.23)
где x = d*. Если допустим, что дисперсия d не неизвестна, то оно может быть определено как среднее значение < >= d.
- Глава I. Метод Монте-Карло и Понятия теории вероятностей
- Классификация вероятностно-статистических методов решения прикладных задач
- §1.2. Некоторые понятия и теоремы теории вероятностей
- Понятия теории вероятностей
- 1.2.2. Основные теоремы теории вероятностей 4
- Локальная теорема
- Интегральная теорема
- Закон Больших Чисел
- Центральная предельная теорема (цпт)
- Эта теорема носит название «Центральная предельная теорема» .
- 1.2.3. Оценка погрешности математического ожидания исследуемой величины
- 1.3. Генераторы, алгоритмы получения и преобразования случайных чисел
- 1.3.1. Получение случайных чисел с помощью случайного эксперимента
- 1.3.2. Алгоритмы получения псевдослучайных чисел 5
- 1.3.3. Понятие эталонной 6, случайной величины
- 1.3.4. Преобразование случайных величин 7
- 1.3.5. Генераторы псевдослучайных чисел на эвм
- 1.3.6. Использование таблицы дискретных случайных чисел
- 1.4. Недостатки и достоинства аналитических, приближенных методов решения математических задач, в том числе и метода Монте-Карло
- Глава II. Вероятностное моделирование математических задач
- 2.1. Общая теория решения системы линейных уравнений 8
- 2.2. Вычисление интегралов способом среднего
- Технология вычисления интеграла способом среднего
- Нахождение определенных интегралов способом «зонтика» Неймана
- 4. Задания на моделирование
- 2.4. Вычисление значения числа
- 2.5. Решение уравнений эллиптического типа (задача Дирихле)
- Глава III. Имитационное моделирование физических процессов и явлений
- 3.1. Имитационное моделирование задач нейтронной физики
- 3.1.1. Задача имитационного моделирования прохождения нейтронов через пластинку
- 3.1.2. Моделирование сорта ядра и вида взаимодействия нейтрона с ядром
- 3.1.3. Решение задачи розыгрыша типа взаимодействия и сорта ядра имитационным моделированием
- 1. Вычисление микросечений водорода
- 2. Вычисление микросечений кислорода
- 3. Вычисление микросечений бора
- 4. Вычисление полного микросечения
- 5.Розыгрыш сорта ядра
- 6. Розыгрыш типа взаимодействия
- 7.Определение полного макросечения
- 3.1.4. Определение направления и энергии частиц после рассеяния
- 3.1.5. Моделирование длины свободного пробега
- 3.1.6. Имитационное моделирование траектории движения нейтронов через пластинку (двухмерный случай)
- 5. Задания на моделирование:
- 3.2. Имитационное моделирование прохождения
- 6. Задания на моделирование:
- 7. Результаты моделирования
- 3.3. Имитационное моделирование распространения упругих волн в пористых средах (задача геофизики)
- Результаты моделирования
- 3.4. Имитационное моделирование явления спонтанного излучения атомов
- 3. Задания на моделирование:
- Моделирование явления спонтанного излучения многоатомной системы (сверхизлучения Дике)
- 2. Задания на моделирование:
- Глава IV. Методы компьютерного моделирования в термодинамике
- 4.1. Метод молекулярной динамики
- 6. Задания на моделирование:
- 7. Результаты моделирования
- 4.2. Метод броуновской динамики
- 2. Алгоритм метода броуновской динамики
- 3. Расчет макроскопических параметров
- 4. Задания на моделирование:
- 4. 3. Имитационный метод моделирования броуновских траекторий
- Литература