logo search
sh

Системы счисления. Позиционные системы счисления, их представление.

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:даёт представления множества чисел (целых и/или вещественных);

даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

отражает алгебраическую и арифметическую структуру чисел.

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам ивавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается b-ричная система счисления, которая определяется целым числом b > 1, называемымоснованием системы счисления. Целое число x в b-ричной системе счисления представляется в виде конечной линейной комбинации степеней числа b:

, где ak — это целые числа, называемые цифрами, удовлетворяющие неравенству  .

Каждая степень bk в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k(номером разряда). Обычно для ненулевого числа x требуют, чтобы старшая цифра an − 1 в его b-ричном представлении была также ненулевой.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x записывают в виде последовательности его b-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются: