logo search
Основи ГІС_ ЛАбораторні (2 частина)

1.4. Вибір методу класифікації

ArcView пропонує п'ять методів класифікації для створення карт із типами легенди Колірна шкала і Градуйований символ:

Ви також можете надрукувати свої ранги значень класів прямо в поле Значення (Value) у Редакторі легенди, щоб задати свої класи.

Вибір методу класифікації залежить від типу ваших даних і від того, що ви хочете продемонструвати з їх допомогою.

Метод природних інтервалів (Natural Breaks)

Метод природних інтервалів у ArcView — це метод класифікації за замовчуванням. Метод встановлює границі угруповань власне кажучи розходжень, що маються в даних. ArcView використовує досить складний статистичний розрахунок (оптимізацію по Дженку (Jenk)), що дозволяє мінімізувати варіації в межах кожного класу. Приклад, приведений на діаграмі, показує, як це працює: представлений набір об'єктів (ліворуч - праворуч) від самого маленького значення по чисельності населення до найбільшого. Об'єкти розділені на класи, границі класів встановлені в місцях порівняно великих стрибків у значеннях.

Метод квантілєй (рівномірний) (Quantile)

По класифікаційному методу квантілєй кожному класу приписується однакове число об'єктів. На діаграмі, показаній нижче, п'ять перших країн розміщені в першому класі, п'ять — у другому і т.д.

Не має значення, що країни, розташовані по обох сторонах границі класів, мають однакову чисельність населення. Рівномірні класи, отже, можуть вводити в оману, оскільки низькі значення часто попадають в один клас з високими значеннями. Перебороти подібне перекручування можна, збільшивши число класів. Класифікація по методу квантілєй найкраще підходить для класифікації даних з лінійним розподілом, іншими словами, для даних, у яких відсутнє диспропорційне число об'єктів з однаковими значеннями. Цей метод використовується, коли потрібно виділити значення об'єкта щодо інших об'єктів, наприклад, показати, що магазин входить у першу третину магазинів по величині продажів.

Рівноплощадний метод (Equal area)

Рівноплощадний метод дозволяє класифікувати полігони по інтервалах у значеннях атрибутів так, щоб загальна площа полігонів у кожнім класі складала приблизно ту саму величину. ArcView визначає загальну площу тільки по полігонах, що мабть дійсні значення атрибутивних даних. Класи, отримані за допомогою рівноплощадного методу, типологічно такі ж як і класи, отримані за допомогою методу рівномірних інтервалів.

Рівноплощадний метод класифікації схожий на класифікаційний метод квантілєй за винятком того, що кожному об'єкту при цій класифікації надається вага, відмінна від 1.

Метод рівних інтервалів (Equal interval)

За допомогою рівнопроміжного методу класифікації всі значення атрибутів поділяються на рівні по розміру підгрупи (підкласи). Наприклад, якщо об'єкти у вашій темі мають значення атрибутів у діапазоні від 12 до 351, загальний діапазон цих значень складе 339, так що при розподілі цих об'єктів на три класи за допомогою рівнопроміжного методу класифікації, у кожнім класі будуть представлені значення в межах 113, і, отже, значення класів будуть 12-125, 126-238, і 239-351, як показано на діаграмі.

Класифікація по методу рівних інтервалів використовується, коли ви хочете підкреслити величину значення атрибута в порівнянні з іншими значеннями, наприклад, показати, що який-небудь магазин належить до групи магазинів, що складають верхню третю частину від усіх продажів. Рівнопроміжний метод класифікації є ідеальним для даних, чий діапазон заздалегідь відомий, таких як процентні співвідношення або температура. Чисельність населення або інші дані, для яких відсутня пряма концептуальна залежність від діапазону даних, можуть бути краще представлені за допомогою інших методів класифікації.

Метод стандартних відхилень (Standart deviation)

Стандартне відхилення показує різницю значення атрибута в порівнянні із середнім значенням усіх величин. При класифікації даних з використанням методу стандартних відхилень, ArcView знаходить середнє значення і потім розставляє інтервали нагору і вниз стосовно середнього значення з кроком 1, 0,5 або 0,25, поки всі значення даних не будуть включені у свій клас. ArcView розподілить значення які відрізняються більш ніж на три стандартних відхилення від середнього на два класи: більше трьох стандартних відхилень від середнього ('> 3 Std Dev.') і менше трьох стандартних відхилень від середнього ('< -3 Std. Dev.'). На карті з колірною шкалою за замовчуванням встановлюється діхроматична лінійна зміна кольору (наприклад, від блакитного до червоного) і середнє значення даних дається нейтральним кольором (наприклад, білим).

На діаграмах, приведених нижче, показано, як утворюються класи.

На першій діаграмі показано, що об'єкти розміщені по їхніх атрибутивних значеннях на нижній осі. Розраховуються середня величина і стандартне відхилення. У приведеному прикладі середнє значення — 180 і стандартне відхилення — 103. Наприклад, об'єкт попадає в клас "ОБ — 1 стандартне відхилення", якщо його значення перевищує середнє не більш, ніж на 103 (від 180 до 283).

На діаграмі внизу показаний той же набір значень атрибутів, розміщений на вертикальній осі, так що ви можете порівняти цю діаграму з іншими методами класифікації.