Искусственный нейрон
Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рис. 1.2 представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2,…, xn, поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1, w2,…, wn, и поступает на суммирующий блок, обозначенный Σ. Каждый вес соответствует «силе» одной биологической синаптической связи. (Множество весов в совокупности обозначается вектором W.) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET. В векторных обозначениях это может быть компактно записано следующим образом:
NET = XW.
Рис. 1.2. Искусственный нейрон
- Нейрокомпьютерная техника: Теория и практика
- Предисловие
- Благодарности
- Введение почему именно искусственные нейронные сети?
- Свойства искусственных нейронных сетей
- Обучение
- Обобщение
- Абстрагирование
- Применимость
- Исторический аспект
- Искусственные нейронные сети сегодня
- Перспективы на будущее
- Искусственные нейронные сети и экспертные системы
- Соображения надежности
- Литература
- Глава 1. Основы искусственных нейронных сетей
- Биологический прототип
- Искусственный нейрон
- Активационные функции
- Однослойные искусственные нейронные сети
- Многослойные искусственные нейронные сети
- Нелинейная активационная функция
- Сети с обратными связями
- Терминология, обозначения и схематическое изображение искусственных нейронных сетей
- Терминология
- Дифференциальные уравнения или разностные уравнения
- Графическое представление
- Обучение искусственных нейронных сетей
- Цель обучения
- Обучение с учителем
- Обучение без учителя
- Алгоритмы обучения
- Литература
- Глава 2. Персептроны персептроны и зарождение искусственных нейронных сетей
- Персептронная представляемость
- Проблема функции исключающее или
- Линейная разделимость
- Преодоление ограничения линейной разделимости
- Эффективность запоминания
- Обучение персептрона
- Алгоритм обучения персептрона
- Дельта-правило
- Трудности с алгоритмом обучения персептрона
- Литература
- Глава 3. Процедура обратного распространения введение в процедуру обратного распространения
- Обучающий алгоритм обратного распространения Сетевые конфигурации
- Многослойная сеть.
- Обзор обучения
- Дальнейшие алгоритмические разработки
- Применения
- Предостережение
- Паралич сети
- Локальные минимумы
- Размер шага
- Временная неустойчивость
- Литература
- Глава 4. Сети встречного распространения введение в сети встречного распространения
- Структура сети
- Нормальное функционирование Слои Кохоненна
- Слой Гроссберга
- Обучение слоя кохонена
- Предварительная обработка входных векторов
- Выбор начальных значений весовых векторов
- Режим интерполяции
- Статистические свойства обученной сети
- Обучение слоя гроссберга
- Сеть встречного распространения полностью
- Приложение: сжатие данных
- Обсуждение
- Литература
- Глава 5. Стохастические методы
- Использование обучения
- Больцмановское обучение
- Обучение Коши
- Метод искусственной теплоемкости
- Приложения к общим нелинейным задачам оптимизации
- Обратное распространение и обучение коши
- Трудности, связанные с обратным распространением
- Трудности с алгоритмом обучения Коши
- Комбинирование обратного распространения с обучением Коши
- Обсуждение
- Литература
- Глава 6. Сети Хопфилда
- Конфигурации сетей с обратными связями
- Бинарные системы
- Устойчивость
- Ассоциативная память
- Непрерывные системы
- Сети Хопфилда и машина Больцмана
- Термодинамические системы
- Статистичекие сети Хопфилда
- Обобщенные сети
- Приложения Аналого-цифровой преобразователь
- Задача коммивояжера
- Обсуждение Локальные минимумы
- Скорость
- Функция энергии
- Емкость сети
- Литература
- Глава 7. Двунаправленная ассоциативная память
- Структура дап
- Восстановление запомненных ассоциаций
- Кодирование ассоциаций
- Емкость памяти
- Непрерывная дап
- Адаптивная дап
- Конкурирующая дап
- Заключение
- Литература
- Глава 8. Адаптивная резонансная теория
- Архитектура apt
- Описание apt
- Упрощенная архитектура apt
- Функционирование сети apt в процессе классификации
- Реализация apt Обзор
- Функционирование сетей apt
- Пример обучения сети apt
- Характеристики apt
- Инициализация весовых векторов т
- Настройка весовых векторов Вj
- Инициализация весов bij
- Теоремы apt
- Заключение
- Литература
- Глава 9. Оптические нейронные сети
- Векторно-матричные умножители
- Электронно-оптические матричные умножители
- Сети Хопфилда на базе электронно-оптических матричных умножителей
- Голографические корреляторы
- Объемные голограммы
- Оптическая сеть Хопфилда, использующая объемные голограммы
- Заключение
- Литература
- Глава 10. Когнитрон и неокогнитрон
- Когнитрон
- Структура
- Обучение
- Неокогнитрон
- Структура
- Обобщение
- Вычисления
- Обучение
- Заключение
- Литература
- Приложение а. Биологические нейронные сети человеческий мозг: биологическая модель для искусственных нейронных сетей
- Организация человеческого мозга
- Мембрана клетки
- Компьютеры и человеческий мозг
- Приложение б. Алгоритмы обучения
- Обучение с учителем и без учителя
- Метод обучения хэбба
- Алгоритм обучения Хэбба
- Метод сигнального обучения Хэбба
- Метод дифференциального обучения Хэбба
- Входные и выходные звезды
- Обучение входной звезды
- Обучение выходной звезды
- Обучение персептрона
- Метод обучения уидроу-хоффа
- Методы статистического обучения
- Самоорганизация
- Литература