Структура дап
Рис. 7.1. Конфигурация двунаправленной ассоциативной памяти
На рис. 7.1 приведена базовая конфигурация ДАП. Эта конфигурация существенно отличается от используемой в работе [9]. Она выбрана таким образом, чтобы подчеркнуть сходство с сетями Хопфилда и предусмотреть увеличения количества слоев. На рис. 7.1 входной вектор А обрабатывается матрицей весов W сети, в результате чего вырабатывается вектор выходных сигналов нейронов В. Вектор В затем обрабатывается транспонированной матрицей Wt весов сети, которая вырабатывает новые выходные сигналы, представляющие собой новый входной вектор А. Этот процесс повторяется до тех пор, пока сеть не достигнет стабильного состояния, в котором ни вектор А, ни вектор В не изменяются. Заметим, что нейроны в слоях 1 и 2 функционируют, как и в других парадигмах, вычисляя сумму взвешенных входов и вычисляя по ней значение функции активации F. Этот процесс может быть выражен следующим образом:
(7.1)
или в векторной форме:
В = F(AW), (7.2)
где В – вектор выходных сигналов нейронов слоя 2, А – вектор выходных сигналов нейронов слоя 1, W – матрица весов связей между слоями 1 и 2, F – функция активации.
Аналогично
A = F(BWt) (7.3)
где Wt является транспозицией матрицы W.
Как отмечено в гл. 1, Гроссберг показал преимущества использования сигмоидальной (логистической) функции активации
(7.3)
где OUTi – выход нейрона i, NETi – взвешенная сумма входных сигналов нейрона i, – константа, определяющая степень кривизны.
В простейших версиях ДАП значение константы выбирается большим, в результате чего функция активации приближается к простой пороговой функции. В дальнейших рассуждениях будем предполагать, что используется пороговая функция активации.
Примем также, что существует память внутри каждого нейрона в слоях 1 и 2 и что выходные сигналы нейронов изменяются одновременно с каждым тактом синхронизации, оставаясь постоянными между этими тактами. Таким образом, поведение нейронов может быть описано следующими правилами:
OUTi(n+1) = 1, если NETi(n)>0,
OUTi(n+l) = 0, если NETi(n)<0,
OUTi(n+l) = OUT(n), если NETi(n) = 0,
где OUTi(n) представляет собой величину выходного сигнала нейрона i в момент времени п.
Заметим, что как и в описанных ранее сетях слой 0 не производит вычислений и не имеет памяти; он является только средством распределения выходных сигналов слоя 2 к элементам матрицы Wt.
- Нейрокомпьютерная техника: Теория и практика
- Предисловие
- Благодарности
- Введение почему именно искусственные нейронные сети?
- Свойства искусственных нейронных сетей
- Обучение
- Обобщение
- Абстрагирование
- Применимость
- Исторический аспект
- Искусственные нейронные сети сегодня
- Перспективы на будущее
- Искусственные нейронные сети и экспертные системы
- Соображения надежности
- Литература
- Глава 1. Основы искусственных нейронных сетей
- Биологический прототип
- Искусственный нейрон
- Активационные функции
- Однослойные искусственные нейронные сети
- Многослойные искусственные нейронные сети
- Нелинейная активационная функция
- Сети с обратными связями
- Терминология, обозначения и схематическое изображение искусственных нейронных сетей
- Терминология
- Дифференциальные уравнения или разностные уравнения
- Графическое представление
- Обучение искусственных нейронных сетей
- Цель обучения
- Обучение с учителем
- Обучение без учителя
- Алгоритмы обучения
- Литература
- Глава 2. Персептроны персептроны и зарождение искусственных нейронных сетей
- Персептронная представляемость
- Проблема функции исключающее или
- Линейная разделимость
- Преодоление ограничения линейной разделимости
- Эффективность запоминания
- Обучение персептрона
- Алгоритм обучения персептрона
- Дельта-правило
- Трудности с алгоритмом обучения персептрона
- Литература
- Глава 3. Процедура обратного распространения введение в процедуру обратного распространения
- Обучающий алгоритм обратного распространения Сетевые конфигурации
- Многослойная сеть.
- Обзор обучения
- Дальнейшие алгоритмические разработки
- Применения
- Предостережение
- Паралич сети
- Локальные минимумы
- Размер шага
- Временная неустойчивость
- Литература
- Глава 4. Сети встречного распространения введение в сети встречного распространения
- Структура сети
- Нормальное функционирование Слои Кохоненна
- Слой Гроссберга
- Обучение слоя кохонена
- Предварительная обработка входных векторов
- Выбор начальных значений весовых векторов
- Режим интерполяции
- Статистические свойства обученной сети
- Обучение слоя гроссберга
- Сеть встречного распространения полностью
- Приложение: сжатие данных
- Обсуждение
- Литература
- Глава 5. Стохастические методы
- Использование обучения
- Больцмановское обучение
- Обучение Коши
- Метод искусственной теплоемкости
- Приложения к общим нелинейным задачам оптимизации
- Обратное распространение и обучение коши
- Трудности, связанные с обратным распространением
- Трудности с алгоритмом обучения Коши
- Комбинирование обратного распространения с обучением Коши
- Обсуждение
- Литература
- Глава 6. Сети Хопфилда
- Конфигурации сетей с обратными связями
- Бинарные системы
- Устойчивость
- Ассоциативная память
- Непрерывные системы
- Сети Хопфилда и машина Больцмана
- Термодинамические системы
- Статистичекие сети Хопфилда
- Обобщенные сети
- Приложения Аналого-цифровой преобразователь
- Задача коммивояжера
- Обсуждение Локальные минимумы
- Скорость
- Функция энергии
- Емкость сети
- Литература
- Глава 7. Двунаправленная ассоциативная память
- Структура дап
- Восстановление запомненных ассоциаций
- Кодирование ассоциаций
- Емкость памяти
- Непрерывная дап
- Адаптивная дап
- Конкурирующая дап
- Заключение
- Литература
- Глава 8. Адаптивная резонансная теория
- Архитектура apt
- Описание apt
- Упрощенная архитектура apt
- Функционирование сети apt в процессе классификации
- Реализация apt Обзор
- Функционирование сетей apt
- Пример обучения сети apt
- Характеристики apt
- Инициализация весовых векторов т
- Настройка весовых векторов Вj
- Инициализация весов bij
- Теоремы apt
- Заключение
- Литература
- Глава 9. Оптические нейронные сети
- Векторно-матричные умножители
- Электронно-оптические матричные умножители
- Сети Хопфилда на базе электронно-оптических матричных умножителей
- Голографические корреляторы
- Объемные голограммы
- Оптическая сеть Хопфилда, использующая объемные голограммы
- Заключение
- Литература
- Глава 10. Когнитрон и неокогнитрон
- Когнитрон
- Структура
- Обучение
- Неокогнитрон
- Структура
- Обобщение
- Вычисления
- Обучение
- Заключение
- Литература
- Приложение а. Биологические нейронные сети человеческий мозг: биологическая модель для искусственных нейронных сетей
- Организация человеческого мозга
- Мембрана клетки
- Компьютеры и человеческий мозг
- Приложение б. Алгоритмы обучения
- Обучение с учителем и без учителя
- Метод обучения хэбба
- Алгоритм обучения Хэбба
- Метод сигнального обучения Хэбба
- Метод дифференциального обучения Хэбба
- Входные и выходные звезды
- Обучение входной звезды
- Обучение выходной звезды
- Обучение персептрона
- Метод обучения уидроу-хоффа
- Методы статистического обучения
- Самоорганизация
- Литература