Алгоритмы обучения
Большинство современных алгоритмов обучения выросло из концепций Хэбба [2]. Им предложена модель обучения без учителя, в которой синаптическая сила (вес) возрастает, если активированны оба нейрона, источник и приемник. Таким образом, часто используемые пути в сети усиливаются и феномен привычки и обучения через повторение получает объяснение.
В искусственной нейронной сети, использующей обучение по Хэббу, наращивание весов определяется произведением уровней возбуждения передающего и принимающего нейронов. Это можно записать как
wij(n+1) = w(n) + αOUTi OUTj,
где wij(n) – значение веса от нейрона i к нейрону j до подстройки, wij(n+1) – значение веса от нейрона i к нейрону j после подстройки, α – коэффициент скорости обучения, OUTi – выход нейрона i и вход нейрона j, OUTj – выход нейрона j.
Сети, использующие обучение по Хэббу, конструктивно развивались, однако за последние 20 лет были развиты более эффективные алгоритмы обучения. В частности, в работах [4 – 6] и многих других были развиты алгоритмы обучения с учителем, приводящие к сетям с более широким диапазоном характеристик обучающих входных образов и большими скоростями обучения, чем использующие простое обучение по Хэббу.
В настоящее время используется огромное разнообразие обучающих алгоритмов. Потребовалась бы значительно большая по объему книга, чем эта, для рассмотрения этого предмета полностью. Чтобы рассмотреть этот предмет систематически, если и не исчерпывающе, в каждой из последующих глав подробно описаны алгоритмы обучения для рассматриваемой в главе парадигмы. В дополнение в приложении Б представлен общий обзор, в определенной мере более обширный, хотя и не очень глубокий. В нем дан исторический контекст алгоритмов обучения, их общая таксономия, ряд преимуществ и ограничений. В силу необходимости это приведет к повторению части материала, оправданием ему служит расширение взгляда на предмет.
ПРОЛОГ
В последующих главах представлены и проанализированы некоторые наиболее важные сетевые конфигурации и их алгоритмы обучения. Представленные парадигмы дают представление об искусстве конструирования сетей в целом, его прошлом и настоящем. Многие другие парадигмы при тщательном рассмотрении оказываются лишь их модификациями. Сегодняшнее развитие нейронных сетей скорее эволюционно, чем революционно. Поэтому понимание представленных в данной книге парадигм позволит следить за прогрессом в этой быстро развивающейся области.
Упор сделан на интуитивные и алгоритмические, а не математические аспекты. Книга адресована скорее пользователю искусственных нейронных сетей, чем теоретику. Сообщается, следовательно, достаточно информации, чтобы дать читателю возможность понимать основные идеи. Те, кто знаком с программированием, смогут реализовать любую из этих сетей. Сложные математические выкладки опущены, если только они не имеют прямого отношения к реализации сети. Для заинтересованного читателя приводятся ссылки на более строгие и полные работы.
- Нейрокомпьютерная техника: Теория и практика
- Предисловие
- Благодарности
- Введение почему именно искусственные нейронные сети?
- Свойства искусственных нейронных сетей
- Обучение
- Обобщение
- Абстрагирование
- Применимость
- Исторический аспект
- Искусственные нейронные сети сегодня
- Перспективы на будущее
- Искусственные нейронные сети и экспертные системы
- Соображения надежности
- Литература
- Глава 1. Основы искусственных нейронных сетей
- Биологический прототип
- Искусственный нейрон
- Активационные функции
- Однослойные искусственные нейронные сети
- Многослойные искусственные нейронные сети
- Нелинейная активационная функция
- Сети с обратными связями
- Терминология, обозначения и схематическое изображение искусственных нейронных сетей
- Терминология
- Дифференциальные уравнения или разностные уравнения
- Графическое представление
- Обучение искусственных нейронных сетей
- Цель обучения
- Обучение с учителем
- Обучение без учителя
- Алгоритмы обучения
- Литература
- Глава 2. Персептроны персептроны и зарождение искусственных нейронных сетей
- Персептронная представляемость
- Проблема функции исключающее или
- Линейная разделимость
- Преодоление ограничения линейной разделимости
- Эффективность запоминания
- Обучение персептрона
- Алгоритм обучения персептрона
- Дельта-правило
- Трудности с алгоритмом обучения персептрона
- Литература
- Глава 3. Процедура обратного распространения введение в процедуру обратного распространения
- Обучающий алгоритм обратного распространения Сетевые конфигурации
- Многослойная сеть.
- Обзор обучения
- Дальнейшие алгоритмические разработки
- Применения
- Предостережение
- Паралич сети
- Локальные минимумы
- Размер шага
- Временная неустойчивость
- Литература
- Глава 4. Сети встречного распространения введение в сети встречного распространения
- Структура сети
- Нормальное функционирование Слои Кохоненна
- Слой Гроссберга
- Обучение слоя кохонена
- Предварительная обработка входных векторов
- Выбор начальных значений весовых векторов
- Режим интерполяции
- Статистические свойства обученной сети
- Обучение слоя гроссберга
- Сеть встречного распространения полностью
- Приложение: сжатие данных
- Обсуждение
- Литература
- Глава 5. Стохастические методы
- Использование обучения
- Больцмановское обучение
- Обучение Коши
- Метод искусственной теплоемкости
- Приложения к общим нелинейным задачам оптимизации
- Обратное распространение и обучение коши
- Трудности, связанные с обратным распространением
- Трудности с алгоритмом обучения Коши
- Комбинирование обратного распространения с обучением Коши
- Обсуждение
- Литература
- Глава 6. Сети Хопфилда
- Конфигурации сетей с обратными связями
- Бинарные системы
- Устойчивость
- Ассоциативная память
- Непрерывные системы
- Сети Хопфилда и машина Больцмана
- Термодинамические системы
- Статистичекие сети Хопфилда
- Обобщенные сети
- Приложения Аналого-цифровой преобразователь
- Задача коммивояжера
- Обсуждение Локальные минимумы
- Скорость
- Функция энергии
- Емкость сети
- Литература
- Глава 7. Двунаправленная ассоциативная память
- Структура дап
- Восстановление запомненных ассоциаций
- Кодирование ассоциаций
- Емкость памяти
- Непрерывная дап
- Адаптивная дап
- Конкурирующая дап
- Заключение
- Литература
- Глава 8. Адаптивная резонансная теория
- Архитектура apt
- Описание apt
- Упрощенная архитектура apt
- Функционирование сети apt в процессе классификации
- Реализация apt Обзор
- Функционирование сетей apt
- Пример обучения сети apt
- Характеристики apt
- Инициализация весовых векторов т
- Настройка весовых векторов Вj
- Инициализация весов bij
- Теоремы apt
- Заключение
- Литература
- Глава 9. Оптические нейронные сети
- Векторно-матричные умножители
- Электронно-оптические матричные умножители
- Сети Хопфилда на базе электронно-оптических матричных умножителей
- Голографические корреляторы
- Объемные голограммы
- Оптическая сеть Хопфилда, использующая объемные голограммы
- Заключение
- Литература
- Глава 10. Когнитрон и неокогнитрон
- Когнитрон
- Структура
- Обучение
- Неокогнитрон
- Структура
- Обобщение
- Вычисления
- Обучение
- Заключение
- Литература
- Приложение а. Биологические нейронные сети человеческий мозг: биологическая модель для искусственных нейронных сетей
- Организация человеческого мозга
- Мембрана клетки
- Компьютеры и человеческий мозг
- Приложение б. Алгоритмы обучения
- Обучение с учителем и без учителя
- Метод обучения хэбба
- Алгоритм обучения Хэбба
- Метод сигнального обучения Хэбба
- Метод дифференциального обучения Хэбба
- Входные и выходные звезды
- Обучение входной звезды
- Обучение выходной звезды
- Обучение персептрона
- Метод обучения уидроу-хоффа
- Методы статистического обучения
- Самоорганизация
- Литература