2. Интерфейсы графических адаптеров и мониторов. (ипу)
Первое препятствие к повышению быстродействия видеосистемы — это интерфейс передачи данных, к которому подключён видеоадаптер. Как бы ни был быстр процессор видеоадаптера, большая часть его возможностей останется незадействованной, если не будут обеспечены соответствующие каналы обмена информацией между ним, центральным процессором, оперативной памятью компьютера и дополнительными видеоустройствами. Основным каналом передачи данных является, конечно, интерфейсная шина материнской платы, через которую обеспечивается обмен данными с центральным процессором и оперативной памятью. Самой первой шиной использовавшейся в IBM PC была XT-Bus, она имела разрядность 8 бит данных и 20 бит адреса и работала на частоте 4,77 МГц. Далее появилась шина ISA (Industry Standart Architecture — архитектура промышленного стандарта), соответственно она имела разрядность 16/24 бит и работала на частоте 8 МГц. Пиковая пропускная способность составляла чуть больше 5,5 МиБ/с. Этого более чем хватало для отображения текстовой информации и игр с шестнадцатицветной графикой. Дальнейшим рывком явилось появление шины MCA (Micro Channel Architecture) в новой серии компьютеров PS/2 фирмы IBM. Она уже имела разрядность 32/32 бит и пиковую пропускную способность 40 МиБ/с. Но то обстоятельство, что архитектура MCI являлась закрытой (собственностью IBM), побудило остальных производителей искать иные пути увеличения пропускной способности основного канала доступа к видеоадаптеру. И вот, с появлением процессоров серии 486, было предложено использовать для подключения периферийных устройств локальную шину самого процессора, в результате родилась VLB (VESA Local Bus — локальная шина стандарта VESA). Работая на внешней тактовой частоте процессора, которая составляла от 25 МГц до 50 МГц, и имея разрядность 32 бит, шина VLB обеспечивала пиковую пропускную способность около 130 МиБ/с. Этого уже было более чем достаточно для всех существовавших приложений, помимо этого возможность использования её не только для видеоадаптеров, наличие трёх слотов подключения и обеспечение обратной совместимости с ISA (VLB представляет собой просто ещё один 116 контактный разъём за слотом ISA) гарантировали ей достаточно долгую жизнь и поддержку многими производителями чипсетов для материнских плат, и периферийных устройств, даже несмотря на то, что при частотах 40 МГц и 50 МГц обеспечить работу даже двух устройств подключенных к ней представлялось проблематичным из-за чрезмерно высокой нагрузки на каскады центрального процессора (ведь большинство управляющих цепей шло с VLB на процессор напрямую, безо всякой буферизации). И всё-таки, с учётом того, что не только видеоадаптер стал требовать высокую скорость обмена информацией, и явной невозможности подключения к VLB всех устройств (и необходимостью наличия межплатформенного решения, не ограничивающегося только PC), была разработана шина PCI (Periferal Component Interconnect — объединение внешних компонентов) появившаяся, в первую очередь, на материнских платах для процессоров Pentium. С точки зрения производительности на платформе PC всё осталось по-прежнему — при тактовой частоте шины 33 МГц и разрядности 32/32 бит она обеспечивала пиковую пропускную способность 133 МиБ/с - столько же, сколько и VLB. Однако она была удобнее и в конце-концов вытеснила шину VLB и на материнских платах для процессоров класса 486.
С появлением процессоров Intel Pentium II, и серьёзной заявкой PC на принадлежность к рынку высокопроизводительных рабочих станций, а так же с появлением 3D-игр со сложной графикой, стало ясно, что пропускной способности PCI в том виде, в каком она существовала на платформе PC (обычно частота 33 МГц и разрядность 32 бит), скоро не хватит на удовлетворение запросов системы. Поэтому фирма Intel решила сделать отдельную шину для графической подсистемы, несколько модернизировала шину PCI, обеспечила новой получившейся шине отдельный доступ к памяти с поддержкой некоторых специфических запросов видеоадаптеров, и назвала это AGP (Accelerated Graphics Port — ускоренный графический порт). Разрядность шины AGP составляет 32 бит, рабочая частота 66 МГц, поддерживаются режимы передачи данных 1x, 2x, 4x, 8x, в этих режимах за один такт передаются соответственно одно, два, четыре или восемь 32-разрядных слов. Пиковая пропускная способность в режиме 1x — 266 МиБ/с. Выпуск видеоадаптеров на базе шинах PCI и AGP на настоящий момент ничтожно мал, так как шина AGP перестала удовлетворять современным требованиям для мощности новых ПК, и, кроме того, не может обеспечить необходимую мощность питания. Для решения этих проблем создано расширение шины PCI - E — PCI Express версий 1.0 и 2.0, это последовательный, в отличие от AGP, интерфейс, его пропускная способность может достигать нескольких десятков ГБ/с. На данный момент произошёл практически полный отказ от шины AGP в пользу PCI Express. Однако стоит отметить, что некоторые производители до сих предлагают достаточно современные по своей конструкции видеоплаты с интерфейсами PCI и AGP — во многих случаях это достаточно простой путь резко повысить производительность морально устаревшего ПК в некоторых графических задачах.
MDA (англ. Monochrome Display Adapter) — первый видеоадаптер компьютеров IBM PC.
Был представлен фирмой IBM в 1981 году в качестве стандартного видеоадаптера, а также стандарта на мониторы, подключавшиеся к нему. MDA не поддерживал работу в графическом режиме. Единственным допустимым видеорежимом являлся монохромный текстовый режим (Video mode 7) в котором на экране отображалась матрица символов из 80 столбцов и 25 строк.
CGA (англ. Color Graphics Adapter) — графическая плата, выпущенная IBM в 1981 году, и первый стандарт цветных мониторов для IBM PC.Является первой графической платой IBM, поддерживающей цветное изображение.
Стандартная графическая плата CGA имеет 16 килобайтов видеопамяти и может подключаться либо к NTSC-совместимому монитору или телевизору, либо к RGBI монитору. Основанная на видеоконтроллере Motorola MC6845, графическая плата CGA поддерживает несколько графических и текстовых видеорежимов. Наивысшее разрешение среди всех режимов — 640×200, наибольшая цветовая глубина — 4 бита (16 цветов).
VGA (англ. Video Graphics Array) — стандарт мониторов и видеоадаптеров. Выпущен IBM в 1987 году для компьютеров PS/2 Model 50 и более старших[1]. VGA являлся последним стандартом, которому следовало большинство производителей видеоадаптеров.
Видеоадаптер VGA подключается как к цветному, так и к монохромному монитору, при этом доступны все стандартные видеорежимы. Частота обновления экрана во всех стандартных режимах, кроме 640×480, — 70 Гц, в режиме 640×480 — 60 Гц. Видеоадаптер имеет возможность одновременно выводить на экран 256 различных цветов, каждый из которых может принимать одно из 262 144 различных значений (по 6 битов на красный, зелёный и синий компоненты). Объём видеопамяти VGA — 256 кБ.
XGA (англ. Extended Graphics Array) — стандарт мониторов и видеоадаптеров, введённый IBM в 1990 году, поддерживающий более высокое, по сравнению с VGA, разрешение — 1024×768, 256 цветов.
Ultra XGA (англ. Ultra eXtended Graphics Array) — стандарт, адаптер, графика UXGA видеографический стандарт для разрешения экрана 1600×1200 пикселов при 16.7 млн. цветов. (соотношение сторон 4:3)
- 1. Автоматы и формальные языки. Классификация формальных языков и автоматов. Концепция порождения и распознавания. (та)
- 2. Технологические процессы изготовления печатных плат. (ктоп)
- 3. Прерывания в мпс. Типы прерываний. (мпс)
- 1. Регулярные языки и конечные автоматы. (та)
- 2. Индуктивные паразитные наводки в цепях эва. (ктоп)
- 3. Обмен информацией между микропроцессором и внешним устройством. (мпс)
- 1. Контекстно-свободные грамматики и магазинные автоматы. (та)
- 2. Эффективность электромагнитного экранирования. Расчёт электромагнитных экранов. (ктоп)
- 3. Система ввода-вывода. Параллельный порт. (мпс)
- 1. Произвольные автоматы и машина Тьюринга. (та)
- 2. Емкостные паразитные наводки в цепях эва. (ктоп)
- 3. Понятие «технология программирования». Характеристики качества программного обеспечения. Сложность по. Пути ограничения сложности. (тп)
- 1. Абстрактный синтез конечных автоматов. Минимизация и детерминация конечных автоматов. Автоматы Мили и Мура. (та)
- 2. Понятие надёжности электронного аппарата. Расчёт времени безотказной работы. (ктоп)
- 3. Модели жизненного цикла по. Методологии разработки сложных программных систем. Примеры «тяжелого» и «легкого» процесса. (тп)
- 1. Структурный автомат. Канонический метод структурного синтеза автоматов. Этапы синтеза. (та)
- 2. Конструкции корпусов эа и механизмы переноса тепла в них. (ктоп)
- 3. Универсальный язык моделирования uml, его назначение. Варианты использования. Диаграммы вариантов использования. Диаграммы классов. (тп)
- 1. Память структурного автомата. Элементы памяти. Триггеры. (та)
- 2. Роль стандартизации в технике конструирования. Применение ескд и естд. (ктоп)
- 3. Универсальный язык моделирования uml, его назначение. Диаграммы взаимодействия: последовательные и кооперативные. Применение этих диаграмм. (тп)
- Кооперативные диаграммы
- 1. Экспертный метод весовых коэффициентов важности. (моделирование)
- 2. Понятие вычислительного процесса и ресурса, классификация ресурсов, основные виды ресурсов. (спо)
- 3. Универсальный язык моделирования uml, его назначение. Диаграммы деятельности. Диаграммы состояний. Применение этих диаграмм. (тп)
- 1. Планирование и обработка результатов расслоенного (ступенчатого) эксперимента. (моделирование)
- 2. Процессы, состояния процесса, операции над процессами, планирование и диспетчеризация процессов. (спо)
- 3. Тестирование и отладка по. Основные принципы тестирования. Стратегии тестирования программных модулей. Методы структурного тестирования. (тп)
- 1. Полный факторный эксперимент (пфэ). (моделирование)
- 2. Параллельная обработка процессов, проблемы критических участков, взаимоисключения. Синхронизация параллельных процессов на низком уровне. (спо)
- 3. Тестирование по. Основные принципы тестирования. Структурное и функциональное тестирование. Методы функционального тестирования. (тп)
- 1. Модифицированный метод случайного баланса (ммсб). (моделирование)
- 2. Параллельная обработка процессов, проблемы критических участков, взаимоисключения. Синхронизация параллельных процессов на высоком уровне. (спо)
- 3. Эволюция технологий программирования. Структурное программирование. Объектно-ориентированное программирование. (тп)
- 1. Метод наименьших квадратов с предварительной ортогонализацией факторов (мнко). (моделирование)
- 2. Тупики, типы ресурсов для изучения тупиковых ситуаций, необходимые условия возникновения тупиков, стратегии предотвращения тупиков (спо)
- 3. Стадии разработки новой сапр и программного обеспечения сапр. (сапр)
- 1. Планирование второго порядка. Типы планов, их особенности.
- 2. Стратегии управления памятью: стратегии вталкивания, стратегии размещения, стратегии выталкивания. (спо)
- 3. Основная функция сапр. Классификация объектов сапр. (сапр)
- 1. Задача оптимизации. Метод крутого восхождения (Бокса-Уилсона). (моделирование)
- 2. Файловая система, функции файловой системы, состав файловой системы, архитектура, примеры современных файловых систем. (спо)
- 3. Виды и назначение составляющих компонентов сапр. Аннотация. (сапр)
- 1. Оптимизация в условиях ограничений. (моделирование)
- 2. Иерархия памяти. Эволюция видов организации памяти. Особенности страничной, сегментной и сегментно-страничной организации памяти. (спо) Иерархия памяти
- Эволюция видов организации памяти
- Сегментация
- Страничная организация памяти
- Комбинированная сегментно-страничная организация памяти
- 3. Моделирование в сапр. Виды моделей. Применение.
- 1. Цифровые интегральные микросхемы. Серии интегральных микросхем. Параметры цифровых имс. (схемотехника)
- 2. Концепция файловых систем fat32 и ntfs: структура логического диска, возможности, преимущества. (спо)
- 3. Метод конечных элементов. Особенности р- и h-версий. Применение. (сапр)
- 1. Базовые логические элементы (блэ). Параметры и характеристики блэ. (схемотехника)
- 2. Стандартный интерфейс ieее-1284. (ипу)
- 3. Графические стандарты сапр. Уровни связи. Международные организации, устанавливающие стандарты. (сапр)
- 1. Основные типы (технологии) базовых логических элементов. Сравнительная характеристика серий ттл, ттлш, кмоп, эсл, иил (схемотехника)
- 2. Стандартный интерфейс rs-232c. (ипу)
- 3. Основные концепции графического программирования в сапр. Краткий обзор (сапр)
- 2. Шина расширения eisa. (ипу)
- 3. Виртуальная инженерия. Понятие. Компоненты. (сапр)
- 1. Комбинационные схемы: шинный формирователь, схема сравнения, сумматоры. (схемотехника)
- 1) Шинный формирователь
- Сумматор Сумматор (англ. – adder) – цифровой узел, вычисляющий код арифметической суммы входных кодов. Сумматор с последовательным переносом
- 2. Организация стандартной шины pci. (ипу)
- 3. Типы данных сапр, поддерживаемых субд. Классификация. (сапр)
- 1. Триггеры. Принцип действия основных типов триггеров. (схемотехника)
- 2. Вид и организация устройств памяти. Интерфейсы устройств памяти. (ипу)
- 3. Базы данных сапр. Особенности хранения и применения. (сапр)
- 1. Счётчики. Основные типы счётчиков. (схемотехника)
- 2) Организация стандартной шины pci (ипу)
- 2. Интерфейсы графических адаптеров и мониторов. (ипу)
- 3. Общие принципы построения вычислительных сетей. Состав сети, квалификация вычислительных сетей. Топологии сетей. (сети)
- 1. Постоянное запоминающее устройство (пзу). Характеристика основных типов пзу. (схемотехника)
- 2. Параллельный интерфейс нжмд ата и его последовательная модернизация Serial ata. (ипу)
- 3. Модель osi. Уровни модели osi. Функции, выполняемые уровнями. (сети)
- 1. Оперативное запоминающее устройство (озу). Статическое и динамическое озу. (схемотехника)
- 2. Функциональное устройство звуковой карты, интерфейс midi, электромузыкальный цифровой синтезатор. (ипу)
- Стандарт на аппаратуру и программное обеспечение
- 3. Система передачи данных в сети. Типы линий связи. Основные характеристики каналов связи. (сети)
- 1. Буферная память типа fifo ("очередь") и lifo ("магазин"). (схемотехника)
- 2. Структура центрального процессора. Основные блоки. (мпс)
- 3. Кодирование информации. Виды кодов. Самосинхронизирующиеся коды. (сети)
- 1. Базовый принцип конструирования и конструктивные модули. (ктоп)
- 2. Традиционная архитектура мпс по принципам фон Неймана. (мпс)
- 3. Способы доступа к сети. Метод доступа опроса/выбора. Маркерный метод доступа. (сети)
- 1. Показатели качества конструкции. (ктоп)
- 2. Система ввода-вывода. Последовательный порт. (мпс)
- 3. Технологии локальных сетей. Сравнить особенности технологий Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, fddi. Оборудование локальных сетей. (сети)
- 1. Влияние внешних факторов на работу эа и методы борьбы с ними. (ктоп)
- 2. Типы памяти микропроцессора. Подключение памяти. (мпс)
- 3. Технологии глобальных сетей X.25, Frame Relay, атм. Формат блока данных. Основные процедуры, используемые протоколы. (сети)