Вопрос 40: Интерфейс usb.
USB (англ. Universal Serial Bus — «универсальная последовательная шина», произносится «ю-эс-би») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, стрелка и квадрат, расположенные на концах древовидной блок-схемы.
Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.
Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА).
К одному контроллеру шины USB можно подсоединить до 127 устройств по топологии «звезда», в том числе и концентраторы. На одной шине USB может быть до 127 устройств и до 5 уровней каскадирования хабов, не считая корневого.
В настоящее время широко используются устройства, выполненные в соответствии со спецификацией USB 2.0. Недавно появились устройства, работающие на шине USB 3.0.
История
Первые спецификации для USB 1.0 были представлены в 1994—1995 гг. Разработка USB поддерживалась фирмами Intel, Microsoft, Philips, US Robotics. USB стал «общим знаменателем» под тремя не связанными друг с другом стремлениями разных компаний:
Расширение функциональности компьютера. На тот момент для подключения внешних периферийных устройств к персональному компьютеру использовалось несколько «традиционных» (англ. legacy) интерфейсов (PS/2, последовательный порт, параллельный порт, порт для подключения джойстика, SCSI), и с появлением новых внешних устройств разрабатывали и новый разъём. Предполагалось, что USB заменит их все и заодно подхлестнёт разработку нетрадиционных устройств.
Подключить к компьютеру мобильный телефон. В то время поднимались на ноги компьютерные сети, телефоны переходили на цифровую передачу голоса, и ни один из имеющихся интерфейсов не годился для передачи с телефона на компьютер как речи, так и данных.
Простота для пользователя. Старые интерфейсы (например, COM- и LPT-порты) были крайне просты для разработчика, но не давали настоящего «plug and play». Требовались новые механизмы взаимодействия компьютера с низко- и среднескоростными внешними устройствами — возможно, более сложные для конструкторов, но надёжные, дружественные и пригодные к «горячему» подключению.
Поддержка USB вышла в виде патча к Windows 95b, в дальнейшем она вошла в стандартную поставку Windows 98. Устройств было мало, и шину называли «Useless serial bus» — «бесполезная последовательная шина». Впрочем, производители быстро осознали пользу USB, и уже к 2000 году большинство принтеров и сканеров работали с новым интерфейсом.
Hewlett-Packard, Intel, Lucent (ныне Alcatel-Lucent), Microsoft, NEC и Philips совместно выступили с инициативой по разработке более скоростной версии USB. Спецификация USB 2.0 была опубликована в апреле 2000 года, и в конце 2001 года эта версия была стандартизирована USB Implementers Forum. USB 2.0 является обратно совместимой со всеми предыдущими версиями USB.
В середине 2000-х годов BIOS’ы компьютеров начали массово поддерживать USB. Это позволило загружаться с флэш-дисков; пропала надобность в PS/2-клавиатуре, например, для переустановки ОС. На современных материнских платах устанавливают до 12 USB-контроллеров, по два порта на каждом. В большинстве современных ноутбуков COM- и LPT-портов нет, всё чаще появляются настольные компьютеры без этих портов.
Основные сведения
Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки (экрана).
Кабели USB ориентированы, то есть имеют физически разные наконечники «к устройству» и «к хосту». Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту». Возможно и неразъёмное встраивание кабеля в устройство, как в мышь (стандарт запрещает это для устройств full и high speed, но производители его нарушают). Существуют (хотя и запрещены стандартом) и пассивные USB удлинители, имеющие разъёмы «от хоста» и «к хосту».
Шина строго ориентирована, имеет понятие «главное устройство» (хост, он же USB контроллер, обычно встроен в микросхему южного моста на материнской плате) и «периферийные устройства». Шина имеет древовидную топологию, поскольку периферийным устройством может быть разветвитель (hub), в свою очередь имеющий несколько нисходящих разъемов «от хоста». Разветвитель — это сложное электронное устройство, пассивных разветвителей не бывает.
Соединение 2 компьютеров — или 2 периферийных устройств — пассивным USB кабелем невозможно. Существуют активные USB кабели для соединения 2 компьютеров, но они включают в себя сложную электронику, эмулирующую Ethernet адаптер, и требуют установки драйверов с обеих сторон.
Устройства могут быть запитаны от шины, но могут и требовать внешний источник питания. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.
USB поддерживает «горячее» подключение и отключение устройств. Это достигнуто увеличенной длиной заземляющего контакта разъёма по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.
На логическом уровне устройство USB поддерживает транзакции приема и передачи данных. Каждый пакет каждой транзакции содержит в себе номер оконечной точки (endpoint) на устройстве. При подключении устройства драйверы в ядре ОС читают с устройства список оконечных точек и создают управляющие структуры данных для общения с каждой оконечной точкой устройства. Совокупность оконечной точки и структур данных в ядре ОС называется каналом (pipe).
Оконечные точки, а значит, и каналы, относятся к одному из 4 классов — поточный (bulk), управляющий (control), изохронный (isoch) и прерывание (interrupt). Низкоскоростные устройства, такие, как мышь, не могут иметь изохронные и поточные каналы.
Управляющий канал предназначен для обмена с устройством короткими пакетами «вопрос-ответ». Любое устройство имеет управляющий канал 0, который позволяет программному обеспечению ОС прочитать краткую информацию об устройстве, в том числе коды производителя и модели, используемые для выбора драйвера, и список других оконечных точек.
Канал прерывания позволяет доставлять короткие пакеты и в том, и в другом направлении, без получения на них ответа/подтверждения, но с гарантией времени доставки — пакет будет доставлен не позже, чем через N миллисекунд. Например, используется в устройствах ввода (клавиатуры/мыши/джойстики).
Изохронный канал позволяет доставлять пакеты без гарантии доставки и без ответов/подтверждений, но с гарантированной скоростью доставки в N пакетов на один период шины (1 КГц у low и full speed, 8 КГц у high speed). Используется для передачи аудио- и видеоинформации.
Поточный канал дает гарантию доставки каждого пакета, поддерживает автоматическую приостановку передачи данных по нежеланию устройства (переполнение или опустошение буфера), но не дает гарантий скорости и задержки доставки. Используется, например, в принтерах и сканерах.
Время шины делится на периоды, в начале периода контроллер передает всей шине пакет «начало периода». Далее в течение периода передаются пакеты прерываний, потом изохронные в требуемом количестве, в оставшееся время в периоде передаются управляющие пакеты и в последнюю очередь поточные.
Активной стороной шины всегда является контроллер, передача пакета данных от устройства к контроллеру реализована как короткий вопрос контроллера и длинный, содержащий данные, ответ устройства. Расписание движения пакетов для каждого периода шины создается совместным усилием аппаратуры контроллера и ПО драйвера, для этого многие контроллеры используют крайне сложный DMA со сложной DMA-программой, формируемой драйвером.
Размер пакета для оконечной точки есть вшитая в таблицу оконечных точек устройства константа, изменению не подлежит. Он выбирается разработчиком устройства из числа тех, что поддерживаются стандартом USB
Технические характеристики:
два режима передачи данных:
режим с высокой пропускной способностью (Full-Speed) — 12 Мбит/с
режим с низкой пропускной способностью (Low-Speed) — 1,5 Мбит/с
максимальная длина кабеля для режима с высокой пропускной способностью — 5 м [1]
максимальная длина кабеля для режима с низкой пропускной способностью — 3 м [1]
максимальное количество подключённых устройств (включая размножители) — 127
возможно подключение устройств, работающих в режимах с различной пропускной способностью к одному контроллеру USB
напряжение питания для периферийных устройств — 5 В
максимальный ток, потребляемый периферийным устройством — 500 мА
USB 1.1
Спецификация выпущена в сентябре 1998 года. Исправлены проблемы и ошибки, обнаруженные в версии 1.0. Первая версия, получившая массовое распространение.
USB 2.0
Логотип USB 2.0 High Speed
Спецификация выпущена в апреле 2000 года.
USB 2.0 отличается от USB 1.1 введением режима Hi-speed.
Для устройств USB 2.0 регламентировано три режима работы:
Low-speed, 10—1500 Кбит/c (используется для интерактивных устройств: клавиатуры, мыши, джойстика)
Full-speed, 0,5—12 Мбит/с (аудио-, видеоустройства)
Hi-speed, 25—480 Мбит/с (видеоустройства, устройства хранения информации)
Последующие модификации
Последующие модификации к спецификации USB публикуются в рамках Извещений об инженерных изменениях (англ. Engineering Change Notices — ECN). Самые важные из модификаций ECN представлены в наборе спецификаций USB 2.0 (англ. USB 2.0 specification package), доступном на сайте USB Implementers Forum.
Mini-B Connector ECN: извещение выпущено в октябре 2000 года.
Errata, начиная с декабря 2000: извещение выпущено в декабре 2000 года.
Pull-up/Pull-down Resistors ECN: извещение выпущено в мае 2002 года.
Errata, начиная с мая 2002: извещение выпущено в мае 2002 года.
Interface Associations ECN: извещение выпущено в мае 2003 года.
Были добавлены новые стандарты, позволяющие ассоциировать множество интерфейсов с одной функцией устройства.
Rounded Chamfer ECN: извещение выпущено в октябре 2003 года.
Unicode ECN: извещение выпущено в феврале 2005 года.
Данное ECN специфицирует, что строки закодированы с использованием UTF-16LE.
Inter-Chip USB Supplement: извещение выпущено в марте 2006 года.
On-The-Go Supplement 1.3: извещение выпущено в декабре 2006 года.
USB On-The-Go делает возможным связь двух USB-устройств друг с другом без отдельного USB-хоста. На практике одно из устройств играет роль хоста для другого.
USB OTG
Логотип USB OTG
USB OTG (аббр. от On-The-Go) — дальнейшее расширение спецификации USB 2.0, предназначенное для лёгкого соединения периферийных USB-устройств друг с другом без необходимости подключения к ПК. Например, цифровой фотоаппарат можно подключать к фотопринтеру напрямую, если они оба поддерживают стандарт USB OTG. К моделям КПК и коммуникаторов, поддерживающих USB OTG, можно подключать некоторые USB-устройства. Обычно это флэш-накопители, цифровые фотоаппараты, клавиатуры, мыши и другие устройства, не требующие дополнительных драйверов. Этот стандарт возник из-за резко возросшей в последнее время необходимости надёжного соединения различных устройств без использования ПК.
Хотя соединение USB OTG выглядит как одноранговое, на самом деле только создаётся такое ощущение — в действительности устройства сами определяют, какое из них будет мастер-устройством, а какое — подчинённым. Одноранговый интерфейс USB существовать не может.
USB Wireless
Логотип USB wireless
USB wireless — технология USB (официальная спецификация доступна с мая 2005 года), позволяющая организовать беспроводную связь с высокой скоростью передачи информации (до 480 Мбит/с на расстоянии 3 метра и до 110 Мбит/с на расстоянии 10 метров).
23 июля 2007 года USB Implementers Forum (USB-IF) объявила о сертификации шести первых потребительских продуктов с поддержкой Wireless USB. [2]
USB 3.0
Area SD-PEU3N-2EL (USB 3.0 PCIe card), USB 3.0 хост на базе микросхемы µPD720200 фирмы Renesas
USB 3.0 хаб, демонстрационная плата на базе микросхемы VL810 фирмы VIA
Окончательная спецификация USB 3.0 появилась в 2008 году. Созданием USB 3.0 занимались компании Intel, Microsoft, Hewlett-Packard, Texas Instruments, NEC и NXP Semiconductors.
В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0. Кабель USB 2.0 содержит в себе четыре линии — пару для приёма/передачи данных, плюс и ноль питания. В дополнение к ним USB 3.0 добавляет еще четыре линии связи (две витых пары), в результате чего кабель стал гораздо толще. Hовые контакты в разъемах USB 3.0 расположены отдельно от старых на другом контактном ряду. Теперь можно будет с лёгкостью определить принадлежность кабеля к той или иной версии стандарта, просто взглянув на его разъём. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с — что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0.
Версия 3.0 может похвастаться не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Отныне пользователь может не только подпитывать от одного хаба большее количество устройств, но и сами устройства во многих случаях смогут избавиться от отдельных блоков питания.
Компания Asus выпустила материнскую плату P6X58 Premium, у которой есть два USB 3.0 порта. А компания Gigabyte выпустила первую материнскую плату с поддержкой USB 3.0 и SATA 6Gb/s для процессоров AMD — Gigabyte GA-790FXTA-UD5.Порты USB 3.0 на материнской плате синего цвета.
В блоге разработчика Linux USB subsystem Sarah Sharp объявлено о поддержке USB 3.0 ядром Linux, начиная с версии 2.6.31.
Фирмой Intel анонсирована предварительная версия программной модели контроллера USB 3.0 [3].
Но в октябре 2009 года появилась информация (от EE Times со ссылкой на сотрудника одной из крупнейших компаний по производству персональных компьютеров), что корпорация Intel решила повременить с внедрением поддержки USB 3.0 в свои чипсеты до 2011 г. Это решение приведет к тому, что данный стандарт не станет массовым ещё как минимум год. [4]
Кабели и разъёмы USB
USB Тип В
USB Тип А
Спецификация 1.0 регламентировала два типа разъёмов: A — на стороне контроллера или концентратора USB и B — на стороне периферийного устройства. Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB. Новая версия миниатюрных разъёмов, называемых Micro-USB, была представлена USB Implementers Forum 4 января 2007 года.
Размеры разъёмов: USB Тип A — 4×12 мм, USB Тип B — 7×8 мм, USB mini A и USB mini B — 2×7 мм.
Mini USB Тип A (слева) и Mini USB Тип B (справа)
Micro USB тип B
Существуют также разъёмы типа Mini-AB и Micro-AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.
В отличие от других стандартных типов разъёмов[источник не указан 627 дней], USB-A удачно сочетает долговечность и механическую прочность, несмотря на отсутствие винтовой затяжки. Однако уменьшенные варианты разъёмов, имеющие тонкие пластмассовые выступы, высоко выступающие из подложки гнезда, плохо переносят частое смыкание-размыкание и требуют более бережного обращения.
Сигналы USB передаются по двум проводам экранированного четырёхпроводного кабеля.Номер контакта Обозначение Цвет провода
1 V BUS красный
2 D− белый
3 D+ зелёный
4 GND чёрный
Размещение проводников
Здесь GND — цепь «корпуса» для питания периферийных устройств, а VBus — +5 В, также для цепей питания. Данные передаются по проводам D- и D+ дифференциально (состояния 0 и 1 (в терминологии официальной документации diff0 и diff1 соответственно) определяются по разности потенциалов между линиями более 0,2 В и при условии, что на одной из линий (D− в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В.[5] Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (Full-Speed или Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1,5 кОм (D− для режима Low-Speed и D+ для режимов Full-Speed и High-Speed.).[6]
Коннектор USB 3.0 тип B
Коннектор USB 3.0 тип А
Очень важно, чтобы сигнал в кабеле не затухал. Для этого необходимо определить максимальную длину кабеля по следующей маркировке на кабеле «28 AWG/1P…..». Первые две цифры означают калибр проводников, от него зависит максимальная длина кабеля.
Маркировка AWG и соответствующая ей длина кабеля:
28 = 0,81 м
26 = 1,31 м
24 = 2,08 м
22 = 3,33 м
20 = 5,00 м
[править]
Кабели и разъёмы USB 3.0
[править]
Фотографии разъёмов USB 3.0
USB Тип А
USB Тип В
USB Тип B micro
USB тип mini B
USB 3.0 Powered-B
Распиновка коннекторов USB 3.0 A -типа
Расположение контактов на вилке USB 3.0 A-типа Расположение контактов на розетке USB 3.0 A-типа розетка1 VBUS (VCC) Красный
2 D- Белый
3 D+ Зелёный
4 GND Чёрный
5 StdA_SSTX- Синий
6 StdA_SSTX+ Жёлтый
7 GND_DRAIN ЗЕМЛЯ
8 StdA_SSRX- Фиолетовый
9 StdA_SSRX+ Оранжевый
Экран Оплётка Экран коннектора
Распиновка коннекторов USB 3.0 B -типа
Расположение контактов на розетке USB 3.0 B-типа1 VBUS Красный
2 D- Белый
3 D+ Зелёный
4 GND Чёрный
5 StdA_SSTX- Синий
6 StdA_SSTX+ Жёлтый
7 GND_DRAIN ЗЕМЛЯ
8 StdA_SSRX- Фиолетовый
9 StdA_SSRX+ Оранжевый
Shell Оплётка Экран разъёма
Распиновка коннекторов USB 3.0 Micro-B
Расположение контактов вилки USB 3.0 Micro-B1 VBUS Красный
2 D- Белый
3 D+ Зелёный
4 ID не подключён
5 GND Чёрный
6 StdA_SSTX- Синий
7 StdA_SSTX+ Жёлтый
8 GND_DRAIN ЗЕМЛЯ
9 StdA_SSRX- Фиолетовый
10 StdA_SSRX+ Оранжевый
Shell Оплётка Экран разъёма
Также существуют разъёмы USB 3.0 Micro ещё двух типов: вилка USB 3.0 Micro-A и розетка USB 3.0 Micro-AB. Визуально отличаются от USB 3.0 Micro-B «прямоугольной» (не срезанной) частью разъёма с USB 2.0 контактами, что позволяет избежать подключения вилки Micro-A в розетку Micro-B, а разетку Micro-AB делает совместимой с обеими вилками.
Розетка Micro-AB будет применяться в мобильных устройствах, имеющих бортовой USB 3.0 host контроллер. Для идентификации режима хост/клиент используется пин 4 (ID) – в вилке Micro-A он замкнут на «землю».
Распиновка коннекторов USB 3.0 Powered-B
Новый разъём USB 3.0 Powered-B спроектирован с использованием двух дополнительных контактов, что позволяет устройствам предоставлять до 1000 мА другому устройству, например адаптеру Wireless USB. Это позволяет избежать необходимости в источнике питания для устройства, подключаемого к Wireless USB адаптеру… делая ещё один шаг к идеальной системе беспроводной связи (даже без отдельного питания). При обычных проводных подключениях к хосту или хабу эти два дополнительных контакта не используются.
Дополнительные контакты питания розетки USB 3.0 Powered-B1 VBUS +5V Питание
2 USB D- USB 2.0 данные
3 USB D+
4 GND Земля
8 StdA_SSRX- SuperSpeed приём
9 StdA_SSRX+ SuperSpeed приём
7 GND_DRAIN Земля
5 StdA_SSTX- SuperSpeed передача
6 StdA_SSTX+ SuperSpeed передача
10 DPWR Дополнительное питание на устройство
11 DGND Земля питания устройства
Недостатки USB 2.0
Хотя пиковая пропускная способность USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), на практике обеспечить пропускную способность, близкую к пиковой, не удаётся (~33,5 Мбайт/сек на практике). Это объясняется достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire, хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с (10 Мбайт/с) меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации. В связи с этим разнообразные мобильные накопители уже давно «упираются» в недостаточную практическую пропускную способность USB 2.0.
USB и FireWire/1394
Протокол USB storage, представляющий собой метод передачи команд SCSI по шине USB, имеет бо́льшие накладные расходы, чем соответствующий ему протокол SBP-2 шины FireWire/1394. Поэтому при подключении внешнего диска или привода CD/DVD по FireWire удается достичь большей скорости передачи данных.
Кроме того, USB storage не поддерживался в старых ОС (включая Windows 98), и требовал установки драйвера. SBP-2 поддерживался и в них. Также в старых ОС (Windows 2000) протокол USB storage был реализован в урезанном виде, не позволяющем использовать функцию записи CD- и DVD-дисков на подключенном по USB дисководе, SBP-2 никогда не имел таких ограничений.
Шина USB строго ориентирована, потому соединение 2 компьютеров или же 2 периферийных устройств требует дополнительного оборудования. Некоторые производители поддерживают соединение принтера и сканера или же фотоаппарата и принтера, но эти реализации завязаны на конкретного производителя. Шина 1394/FireWire не подвержена этому недостатку (например, можно соединить 2 видеокамеры).
Тем не менее, ввиду лицензионной политики Apple, а также значительно более высокой сложности оборудования, 1394 менее распространён, материнские платы старых компьютеров не имеют контроллера 1394. Что касается периферии, то поддержка 1394 реализована во множестве корпусов для внешних накопителей на основе НЖМД (особенно премиум-сегмента) и приводов оптических дисков, мультимедиа интерфейсах, камкордерах.
Следует также отметить, что Apple использует в своих компьютерах и порт 1394b, известный как FireWire800, скорость передачи данных которого 800Мбит/сек.
Агуров П. В. Интерфейс USB. Практика использования и программирования.-СПб:БХВ-Петербург,2004.-576 с.-ISBN 5-94157-202-6
- Часть 1.2. Basic(Знакомство с информационной технологией) 186
- Часть 1.3. Html (Знакомство с информационной технологией). Примечание: Подробно будут изучать (некоторые специальности) в рамках курса языки разметки web-страниц 198
- Часть 1.4. С-подобные языки(Знакомство с информационной технологией) 204
- Конспект лекций
- Часть 1: Современные информационные технологии (по и оборудовние)
- Вопрос 01. Информация и информатизация.
- Вопрос 02. Устройства хранения информации.
- Вопрос 06. Базы данных. Субд.
- Вопрос 07. Acses
- Вопрос 08. Передача данных.
- Вопрос 09. Сетевые информационные технологии
- Вопрос 10. Интернет. Сервисы, услуги и информационные ресурсы Интернета
- Вопрос 11. Защита информации
- Вопрос 12: Архитектура и структура пк. Назначение составных элементово пк. Сборка пк.
- Часть 2: Разработка информационных технологий. Применение информационных технологий преданазначенных для разработки информационных технологий.
- Вопрос 13. Переменные, объявление переменных, константы, массивы в языке Паскаль.
- Вопрос 14. Условный оператор (If) и оператор выбора (case) в языке Паскаль
- Вопрос 15. Циклы в языке Паскаль
- Вопрос 16. Объявление и использование своих функций и процедур в языке Паскаль
- Вопрос 17. Встроенные функции в языке Паскаль
- Вопрос 23. Понятие класса. Объявление класса.
- Вопрос 25. Среда Delphi и особенности языка
- Вопрос 28. Основные языковые структуры и применение html.
- Вопрос 29. JavaScript.
- 1. Оператор for
- 2. Оператор while
- 3. Оператор do…while
- 4. Метки операторов
- 5. Оператор break
- 6. Оператор continue
- 5. Оператор for…in
- 6. Оператор with
- Вопрос 30. Php.
- Вопрос 31. Жизненный цикл информационных технологий
- Часть 3: Концептуальные информационные технологии
- Вопрос 32: Технология com
- Вопрос 33: Технология Java. Java virtual mashin. Особенности и области применения языка Java.
- Технология Java
- Язык программирования Java
- Вопрос 34: Технология .Net. Особенности языка и области применения языка с#.
- Технология .Net.
- Язык с#.
- Вопрос 35: Использование библиотек DirectX и OpenGl.
- Вопрос 36: Создание компьютерных игр. Генераторы комьпьютерных игр.
- Вопрос 37: Проектирование информационных технологий. Язык uml 2.
- Вопрос 38: Интерпретаторы и компиляторы. История развития языков. Общая характеристика, назначение и область применения различных языков программирования.
- Интерпретаторы
- Компиляторы
- История развития языков. Общая характеристика, назначение и область применения различных языков программирования.
- Вопрос 39: Фриланс в информационных технологиях. Sharovar-ное программирование. Волонтерство в информационных технологиях.
- Фриланс
- Волонтеры
- Вопрос 40: Интерфейс usb.
- Список лабораторных работ (в количестве 5 штук с разделением на составные части)
- Часть 2: Использование ms Acses.
- Часть 3: Использование оборудования.
- Часть 4: Дополнительные лабораторные работы
- Пояснение по содержанию лекций и лабораторных работ
- Условный оператор (If) и оператор выбора (case) в языке Паскаль
- Циклы в языке Паскаль
- Объявление и использование своих функций и процедур в языке Паскаль
- Встроенные функции в языке Паскаль
- (2 Занятие)Лаб. Работа. 1. Часть 2. Особенности применения, особенности языка и среда Delphi (Знакомство с информационной технологией).
- Часть 1.2. Basic(Знакомство с информационной технологией)
- (4 Занятие)Лаб. Работа. 2. Часть 2. Особенности применения, особенности языка и среда Visual Basic (Знакомство с информационной технологией).
- Часть 1.3. Html (Знакомство с информационной технологией). Примечание: Подробно будут изучать (некоторые специальности) в рамках курса языки разметки web-страниц
- Часть 1.4. С-подобные языки(Знакомство с информационной технологией)
- (9 Занятие)Лаб. Работа. 4. Часть 4. Особенности применения, особенности языка и среда ms c# (Знакомство с информационной технологией).
- (10 Занятие)Лаб. Работа. 4. Часть 5. Особенности применения, особенности языка и среда JavaScript (Знакомство с информационной технологией).
- 1. Оператор for
- 2. Оператор while
- 3. Оператор do…while
- 4. Метки операторов
- 5. Оператор break
- 6. Оператор continue
- 5. Оператор for…in
- 6. Оператор with
- (11 Занятие)Лаб. Работа. 4. Часть 6. Особенности применения, особенности языка и среда php (Знакомство с информационной технологией).