logo
Otvety_k_ekzamenatsionnym_biletam_Informatika_1

53. Основные свойства и характеристики электронно-дырочного перехода.

P-n-переход, или электронно-дырочный переход. Зоной p-n-перехода называется область полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p.

Электронно-дырочный переход может быть создан различными путями:

  1. в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (n-область), а в другой — акцепторной (p-область);

  2. на границе двух различных полупроводников с разными типами проводимости.

Если p-n-переход получают вплавлением примесей в монокристаллический полупроводник, то переход от n к р-области происходит скачком (резкий переход). Если используется диффузия примесей, то образуется плавный переход.

При контакте двух областей n- и p- типа из-за градиента концентрации носителей заряда возникает диффузия последних в области с противоположным типом электропроводности. В p-области вблизи контакта после диффузии из неё дырок остаются некомпенсированные ионизированные акцепторы (отрицательные неподвижные заряды), а в n-области — некомпенсированные ионизированные доноры (положительные неподвижные заряды). Образуется область пространственного заряда (ОПЗ), состоящая из двух разноимённо заряженных слоёв. Между некомпенсированными разноимёнными зарядами ионизированных примесей возникает электрическое поле, направленное от n-области к p-области и называемое диффузионным электрическим полем. Данное поле препятствует дальнейшей диффузии основных носителей через контакт — устанавливается равновесное состояние. Между n- и p-областями при этом существует разность потенциалов, называемая контактной разностью потенциалов. Потенциал n-области положителен по отношению к потенциалу p-области. Обычно контактная разность потенциалов в данном случае составляет десятые доли вольта.

Внешнее электрическое поле изменяет высоту барьера и нарушает равновесие потоков носителей тока через барьер. Если положительный потенциал приложен к p-области, то потенциальный барьер понижается, а ОПЗ сужается. В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть барьер. Как только эти носители миновали p — n-переход, они становятся неосновными. Поэтому концентрация неосновных носителей по обе стороны перехода увеличивается. Одновременно в p- и n-областях через контакты входят равные количества основных носителей, вызывающих компенсацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через переход, который с ростом напряжения экспоненциально возрастает.

Приложение отрицательного потенциала к p-области приводит к повышению потенциального барьера. Диффузия основных носителей через переход становится пренебрежимо малой. В то же время потоки неосновных носителей не изменяются. Неосновные носители заряда втягиваются электрическим полем в p-n-переход и проходят через него в соседнюю область. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p-n-переход течёт ток Is (ток насыщения), который обычно мал и почти не зависит от напряжения. Таким образом, вольтамперная характеристика p-n-перехода обладает резко выраженной нелинейностью. При изменении знака U значение тока через переход может изменяться в 105 — 106 раз. Благодаря этому p-n-переход может использоваться для выпрямления переменных токов.