Классификация систем с чпу.
На основе достижений кибернетики, электроники, вычислительной техники и приборостроения были разработаны принципиально новые системы программного управления – системы ЧПУ, широко используемые в промышленности. Эти системы называют числовыми потому, что величина каждого хода исполнительного органа станка задается с помощью числа. Каждой единице информации соответствует дискретное перемещение исполнительного органа на определенную величину, называемой разрешающей способностью системы ЧПУ или ценой импульса.
В определенных пределах исполнительный орган можно переместить на любую величину, кратную разрешающей способности. Число импульсов, которое можно подать на вход привода, чтобы осуществить требуемое перемещение, определяется отношением длины перемещения к цене импульса системы ЧПУ. Число импульсов, записанное в определенной системе кодирования на носителе информации (перфоленте, магнитной ленте и других), является программой, определяющей величину размерной информации.
Станки с программным управлением по виду управления подразделяют на станки и системами циклового программного управления и станки с системами числового программного управления. Системы циклового программного управления более просты, так как в них программируется только цикл работы станка, а величины рабочих перемещений, т.е. геометрическая информация, задаются упрощенно, например, с помощью упоров. В станках с ЧПУ управление осуществляется от программы, в которой в числовом виде занесена и геометрическая, и технологическая информация.
Система ЧПУ – это совокупность специализированных устройств, методов и средств, необходимых для реализации ЧПУ станком, предназначенная для выдачи управляющих воздействий исполнительным органам станка в соответствии с управляющей программой .
Устройство программного управления станками – это часть системы ЧПУ, выполненная как единое целое с ней и осуществляющая выдачу управляющих воздействий по заданной программе.
Числовое программное управление – это управление, при котором программу задают в виде записанного на каком-либо носителе массива информации. Управляющая информация для систем ЧПУ является дискретной и ее обработка в процессе управления осуществляется цифровыми методами. Управление технологическими циклами практически повсеместно осуществляется с помощью программируемых логических контроллеров, реализуемых на основе принципов цифровых электронных вычислительных устройств.
Структурная схема системы ЧПУ представлена на рисунке 1, а. Чертеж детали (ЧД), подлежащий обработке на станке с ЧПУ, одновременно поступает в систему подготовки программы (СПП) и систему технологической подготовки (СТП). Последняя обеспечивает систему подготовки программы данными о разрабатываемом технологическом процессе, режимах резания и так далее. На основании этих данных разрабатывается управляющая программа (УП). Наладчики устанавливают на станок приспособления, режущие инструменты согласно документации, разработанной в системе технологической подготовки. Установку заготовки и снятие готовой детали осуществляет оператор или автоматический загрузчик. Считывающее устройство (СУ) считывает информацию с носителя программы. Информация поступает в устройство ЧПУ, которое выдает управляющие команды на целевые механизмы (ЦМ) станка, осуществляющие основные и вспомогательные движения цикла обработки. Операционная система на основе информации (фактическое положение, скорость перемещения исполнительных узлов, фактический размер обрабатываемой поверхности, тепловые и силовые параметры технологической системы и др.) контролируют величину перемещения целевого механизма. Станок содержит несколько целевых механизмов, каждый из которых включает в себя (рисунок 1, б): двигатель (ДВ), являющийся источником энергии; передачу (П), служащую для преобразования энергии и ее передачи от двигателя к исполнительному органу (ИО); собственно исполнительный орган (стол, салазки, суппорт, шпиндель и т.д.), выполняющие координатные перемещения цикла.
Рисунок 1 - Структурная схема системы ЧПУ и целевого механизма
Система ЧПУ может видоизменяться в зависимости от вида программ носителя, способа кодирования информации в управляющей программе и метода ее передачи в систему ЧПУ. Устройство ЧПУ размещают рядом со станком (в одном или двух шкафах) или непосредственно на станке (в подвесных или стационарных пультах управления). Двигатели приводов подач станков с ЧПУ, имеющие специальную конструкцию и работающие с конкретным устройством ЧПУ, являются составной частью системы ЧПУ.
Все данные, необходимые для обработки заготовки на станке с ЧПУ, получает от управляющей программы, которая содержит два вида информации: геометрическую и технологическую. Геометрическая информация – координаты опорных точек траектории движения инструмента, а технологическая – данные о скорости, подаче, номере инструмента и т. д. Управляющую программу записывают на программ носителе. В оперативных системах ЧПУ программа может вводиться (с помощью клавиш) непосредственно на станке.
Важнейшей технической характеристикой систем ЧПУ является ее разрешающая способность или дискретность, т. е. минимально возможная величина линейного и углового хода исполнительного органа станка, соответствующая одному управляющему импульсу. Большинство современных систем ЧПУ имеют дискретность 0,001 мм/импульс, реже 0,0001 мм/импульс.
Системы ЧПУ классифицируют по следующим признакам:
по уровню технических возможностей;
по технологическому назначению;
по числу потоков информации (незамкнутые, замкнутые, самоприспосабливающиеся или адаптивные);
по принципу задания программы (в декорированном виде, т.е. в абсолютных координатах или в приращениях от ЭВМ);
по принципу привода (ступенчатый, регулируемый, следящий, шаговый);
по числу одновременно управляемых координат;
по способу подготовки и ввода управляющей программы.
По уровню технологических возможностей международной классификации системы ЧПУ делятся на следующие классы:
NC – системы с покадровым чтением перфоленты на протяжении цикла обработки каждой заготовки;
SNC – системы с однократным чтением всей перфоленты перед обработкой партии одинаковых заготовок;
CNC – системы со встроенной малой ЭВМ (компьютером, микрокомпьютером);
DNC – системы прямого числового управления группами станков от одной ЭВМ;
HNC – оперативные системы с ручным набором программ на пульте управления.
По технологическому назначению системы ЧПУ подразделяются на четыре вида: позиционные; обеспечивающие прямоугольное формообразование; обеспечивающие прямолинейное формообразование; обеспечивающие криволинейное формообразование .
Позиционные системы ЧПУ обеспечивают высокоточное перемещение (координатную установку) исполнительного органа станка в заданную программой позицию за минимальное время. По каждой координатной оси программируется только величина перемещения, а траектория перемещения может быть произвольной. Перемещение исполнительного органа из позиции в позицию осуществляется с максимальной скоростью, а переход к заданной позиции – минимальной скоростью. Точность позиционирования повышается в результате подхода исполнительного органа к заданной позиции всегда с одной стороны (например, слева направо). Позиционными системами ЧПУ оснащают сверлильные и координатно-расточные станки.
Системы ЧПУ, обеспечивающие прямоугольное формообразование, в отличие от позиционных систем позволяют управлять перемещением исполнительного органа станка в процессе обработки. В процессе формообразования исполнительный орган станка перемещается по координатным осям поочередно, поэтому траектория инструмента имеет ступенчатый вид, а каждый элемент этой траектории параллелен координатным осям. Чтобы сократить время перемещения исполнительного органа из одной позиции в другую, в ряде случаев используют одновременное движение по двум координатам. При грубом позиционировании подход исполнительного органа к заданной позиции осуществляется с разных сторон, а при точном позиционировании – всегда с одной стороны. Число управляемых координат в таких системах достигает 5, а число одновременно управляемых координат – 4. Указанными системами оснащают токарные, фрезерные, расточные станки.
Системы ЧПУ, обеспечивающие прямолинейное (под любым углом к координатным осям станка) формообразование и позиционирование, управляют движением инструмента при резании одновременно по двум координатным осям (X и Y). В данных системах используют двухкоординатный интерполятор, выдающий управляющие импульсы сразу на два привода подач. Общее число управляемых координат в таких системах 2 – 5. Указанные системы обладают большими технологическими возможностями (по сравнению с прямоугольными) и применяются для оснащения токарных, фрезерных, расточных и других видов станков.
Системы ЧПУ, обеспечивающие криволинейное формообразование, позволяют управлять обработкой плоских и объемных деталей, содержащих участки со сложными криволинейными контурами.
Системы ЧПУ, обеспечивающие прямоугольное и криволинейное формообразование, относятся к контурным (непрерывным системам), так как они позволяют обрабатывать заготовку по контуру. Контурные системы ЧПУ имеют, как правило, шаговый двигатель.
Многоцелевые (сверлильно-фрезерно-расточные) станки для расширения их технологических возможностей оснащают контурно-позиционными системами ЧПУ.
По числу потоков информации системы ЧПУ делятся на замкнутые, разомкнутые и адаптивные.
Разомкнутые системы ЧПУ характеризуются наличием одного потока информации, поступающего со считывающего устройства к исполнительному органу станка. В механизмах подач таких систем используют шаговые двигатели. Крутящий момент, развиваемый шаговым двигателем, недостаточен для привода механизма подачи. Поэтому указанный двигатель применяют в качестве задающего устройства, сигналы которого усиливаются различными способами, например, с помощью гидроусилителя моментов (аксиально-поршневого гидродвигателя), вал которого связан с ходовым винтом привода подач. В разомкнутой системе нет датчика обратной связи, и поэтому отсутствует информация о действительном положении исполнительных органов станка.
Замкнутые системы ЧПУ характеризуются двумя потоками информации: от считывающего устройства и от датчика обратной связи. В этих системах рассогласование между заданными и действительными величинами перемещения исполнительных органов устраняется благодаря наличию обратной связи.
Адаптивные системы ЧПУ характеризуются тремя потоками информации:
от считывающего устройства;
от датчика обратной связи по пути;
от датчиков, установленных на станке и контролирующих процесс обработки по таким параметрам, как износ режущего инструмента, изменение сил резания и трения, колебание припуска и твердости материала обрабатываемой заготовки и т.д. Такие системы позволяют корректировать программу обработки с учетом реальных условий резания.
По способу подготовки и ввода управляющей программы различают так называемые оперативные системы ЧПУ (в этом случае управляющую программу готовят и редактируют непосредственно на станке, в процессе обработки первой детали из партии или имитации ее обработки) и системы, для которых управляющая программа готовится независимо от места обработки детали. Причем независимая подготовка управляющей программы может выполняться либо с помощью средств вычислительной техники, входящих в состав систем ЧПУ данного станка, либо вне ее (вручную или с помощью системы автоматизации программирования).
- Оглавление
- Глава 1. Анализ проблемной области. 7
- Глава 2. Обзор и анализ существующих решений. 26
- Глава 3. Анализ и синтез экспертной системы. 57
- Глава 4. Разработка графического приложения и интеграция экспертной системы. 85
- Введение.
- Глава 1. Анализ проблемной области.
- Классификация систем с чпу.
- Применение программного управления.
- Описание проблемной области и постановка задачи.
- Выводы по главе.
- Глава 2. Обзор и анализ существующих решений.
- Общая информация.
- 2.2. Аппаратная часть.
- 2.3. Программное обеспечение.
- 2.4. Экспертные системы.
- 2.4.1. Описание экспертных систем.
- Построение экспертных систем.
- Отличие эс от других программных продуктов.
- Отличительные особенности. Экспертные системы первого и второго поколения.
- Области применения экспертных систем.
- Критерий использования эс для решения задач.
- Ограничения в применение экспертных систем.
- Преимущества эс перед человеком - экспертом.
- Выводы по главе.
- Глава 3. Анализ и синтез экспертной системы.
- Основные компоненты экспертных систем.
- Классификация инструментальных средств экспертных систем.
- Организация знаний в экспертных системах.
- Технология разработки экспертных систем.
- Выводы по главе.
- Глава 4. Разработка графического приложения и интеграция экспертной системы.
- Выбор программных средств, для реализации экспертной системы.
- Разработка базы знаний эс, и обучение системы.
- Список критических параметров эс
- Пороговые и промежуточные значения данных параметров.
- Разработка модели эс.
- Разработка модуля эс в выбранной среде для разработки, и интеграция его в по для управления станком с чпу.
- Результат работы программы.
- Выводы по главе.
- Заключение.
- Список использованных источников.
- Приложение 1. Приложение 2. Приложение 3.
- Приложение 4.