logo
билеты по информатике

7) Единицы измерения количества информации.

Информация и знания. Человек получает информацию из окружающего мира с помощью органов чувств, анализирует ее и выявляет существенные закономерности с помощью мышления, хранит полученную информацию в памяти. Процесс систематического научного познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и так далее). Таким образом, с точки зрения процесса познания информация может рассматриваться как знания. Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.

Уменьшение неопределенности знаний. Подход к информации как мере уменьшения неопределенности знаний позволяет количественно измерять информацию, что чрезвычайно важно для информатики. Рассмотрим вопрос об определении количества информации более подробно на конкретных примерах.

Пусть у нас имеется монета, которую мы бросаем на ровную поверхность. С равной вероятностью произойдет одно из двух возможных событий — монета окажется в одном из двух положений: «орел» или «решка». Можно говорить, что события равновероятны, если при возрастающем числе опытов количества выпадений «орла» и «решки» постепенно сближаются. Например, если мы бросим монету 10 раз, то «орел» может выпасть 7 раз, а решка — 3 раза, если бросим монету 100 раз, то «орел» может выпасть 60 раз, а «решка» — 40 раз, если бросим монету 1000 раз, то «орел» может выпасть 520 раз, а «решка» — 480 и так далее. В итоге при очень большой серии опытов количества выпадений «орла» и «решки» практически сравняются. Перед броском существует неопределенность наших знаний (возможны два события), и, как упадет монета, предсказать невозможно. После броска наступает полная определенность, так как мы видим (получаем зрительное сообщение), что монета в данный момент находится в определенном положении (например, «орел»). Это сообщение приводит к уменьшению неопределенности наших знаний в два раза, так как до броска мы имели два вероятных события, а после броска — только одно, то есть в два раза меньше.

В окружающей действительности достаточно часто встречаются ситуации, когда может произойти некоторое количество равновероятных событий. Так, при бросании равносторонней четырехгранной пирамиды существуют 4 равновероятных события, а при бросании шестигранного игрального кубика - 6 равновероятных событий.

Чем больше количество возможных событий, тем больше начальная неопределенность и соответственно тем большее количество информации будет содержать сообщение о результатах опыта.

Единицы измерения количества информации. Для количественного выражения любой величины необходимо определить единицу измерения. Так, для измерения длины в качестве единицы выбран метр, для измерения массы — килограмм и так далее. Аналогично, для определения количества информации необходимо ввести единицу измерения.

За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность в два раза. Такая единица названа «бит».

Если вернуться к опыту с бросанием монеты, то здесь неопределенность как раз уменьшается в два раза и, следовательно, полученное количество информации равно 1 биту.

Минимальной единицей измерения количества информации является бит, а следующей по величине единицей является байт, причем 1 байт = 23 бит = 8 бит.

В информатике система образования кратных единиц измерения количества информации несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10n, где n = 3, 6, 9 и так далее, что соответствует десятичным приставкам Кило (103), Мега (106), Гига (109) и так далее.

Компьютер оперирует числами не в десятичной, а в двоичной системе счисления, поэтому в кратных единицах измерения количества информации используется коэффициент 2n. Так, кратные байту единицы измерения количества информации вводятся следующим образом: 1 Кбайт = 210 байт = 1024 байт; 1 Мбайт = 210 Кбайт = 1024 Кбайт; 1 Гбайт = 210 Мбайт = 1024 Мбайт. 

Количество возможных событий и количество информации. Существует формула, которая связывает между собой количество возможных событий N и количество информации I: N=2I. По этой формуле можно легко определить количество возможных событий, если известно количество информации. Например, если мы получили 4 бита информации, то количество возможных событий составляло: N = 24= 16. Наоборот, для определения количества информации, если известно количество событий, необходимо решить показательное уравнение относительно I. Например, в игре «Крестики-нолики» на поле 8x8 перед первым ходом существует возможных события (64 различных варианта расположения «крестика»), тогда уравнение принимает вид: 64 = 2I. Так как 64 = 26, то получим: 26 = 2I. Таким образом, I = 6 битов, то есть количество информации, полученное вторым игроком после первого хода первого игрока, составляет 6 битов.

Алфавитный подход к определению количества информации.

При определении количества информации на основе уменьшения неопределенности наших знаний мы рассматриваем информацию с точки зрения содержания, ее понятности и новизны для человека. С этой точки зрения в опыте по бросанию монеты одинаковое количество информации содержится и в зрительном образе упавшей монеты, и в коротком сообщении «Орел», и в длинной фразе «Монета упала на поверхность земли той стороной вверх, на которой изображен орел».

Однако при хранении и передаче информации с помощью технических устройств целесообразно отвлечься от содержания информации и рассматривать ее как последовательность знаков (букв, цифр, кодов цветов точек изображения и так далее). Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события). Тогда, если считать, что появление символов в сообщении равновероятно, по формуле можно рассчитать, какое количество информации несет каждый символ.

Так, в русском алфавите, если не использовать букву ё, количество событий (букв) будет равно 32. Тогда: 32 = 2I,откуда I = 5 битов. Каждый символ несет 5 битов информации (его информационная емкость равна 5 битов). Количество информации в сообщении можно подсчитать, умножив количество информации, которое несет один символ, на количество символов. Количество информации, которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на количество знаков

8) Теория кодирования – это раздел теории информации, изучающий способы отождествления сообщений с отражающими их сигналами. Задачей теории кодирования является согласование источника информации с каналом связи.

Объектом кодирования служит как дискретная, так и непрерывная информация, которая поступает к потребителю через источник информации. Понятие кодирование означает преобразование информации в форму, удобную для передачи по определенному каналу связи.

Обратная операция – декодирование – заключается в восстановлении принятого сообщения из закодированного вида в общепринятый, доступный для потребителя.

В теории кодирования существует ряд направлений:

С появлением управляющих систем, в частности ЭВМ, роль кодирования существенно возросла и изменилась, так как без кодирования невозможна передача информации. В последнее время в связи с развитием телекоммуникационных систем и широким использованием вычислительной техники для обработки и хранения информации возникла новая область знаний – информационная безопасность.

Кодированием называют универсальный способ отображения информации при ее хранении, обработке и передаче в виде системы соответствий между сигналами и элементами сообщений, при помощи которых эти элементы можно зафиксировать.

Код – это правило однозначного преобразования сообщения из одной символической формы представления сообщения в другую, обычно без каких-либо потерь информации.

Если все кодовые слова имеют одинаковую длину, то код называется равномерным, или блочным.

Под абстрактным алфавитом будем понимать упорядоченное дискретное множество символов.

Алфавитное кодирование. Алфавитное, т.е. побуквенное, кодирование можно задать таблицей кодов. Фактически кодом преобразования является некоторая подстановка .

Тогда

, где алфавиту А, множеству слов, составленных в алфавите В. Множество кодов букв называется множеством элементарных кодов. Алфавитное кодирование можно использовать для любого множества сообщений.

Компьютерная обработка данных основана на применении двоичного кода. Этот универсальный способ кодирования годится для любых данных, независимо от их происхождения и содержания.

Кодирование текста

Тексты – это последовательности символов, входящих некоторый алфавит. Кодирование текста сводится к двоичному кодированию алфавита, на основе которого он построен. Чаще всего применяется байтовое кодирование алфавита. В этом случае максимальная мощность алфавита составляет 256 символов. Такой алфавит может содержать два набора буквенных символов (например, русский и латинский), цифры, знаки препинания и математические знаки, пробел и небольшое число дополнительных символов. Примером такого алфавита является код ASCII.

Однако, ограниченный набор из 256 кодов символов сегодня уже не удовлетворяет возросшие потребности международного общения. Все большее распространение получает универсальная система 16-разрядного кодирования символов UNICODE.

Мощность алфавита в системе кодирования UNICODE составляет 216=65 536 разных кодов, из которых 63 484 кода соответствуют символам большинства алфавитов, а оставшиеся 2048 кодов разделены пополам и образуют таблицу размером 1024 столбцов х 1024 строк. В этой таблице более миллиона ячеек, в которых можно разместить еще более миллиона различных символов. Это символы «мертвых» языков, а также символы, не имеющие лексического содержания, указатели, знаки и т.п. Для записи этих дополнительных символов необходима пара 16-разрядных слов (16 разрядов для номера строки и 16 разрядов для номера столбца).

Таким образом, система UNICODE является универсальной системой кодирования всех символов национальных письменных систем и обладает возможностью существенного расширения.

Кодирование изображений

Рисунки, картинки, фотографии кодируются в растровом формате. В этом виде каждое изображение представляет собой прямоугольную таблицу, состоящую из цветовых точек. Цвет и яркость каждой отдельной точки выражаются в числовой форме, что позволяет использовать двоичный код для представления графических данных.

Черно-белые изображения принято представлять в градациях серого цвета, для этого используется модель GreyScale. Если яркость точки кодируется одним байтом, можно использовать 256 различных серых тонов. Такая точность согласуется с восприимчивостью человеческого глаза и возможностями полиграфической техники.

При кодировании цветных изображений применяют принцип декомпозиции цвета на составляющие, для этого используют модель RGB. Цветное изображение на экране получается путем смешивания трех базовых цветов : красного (Red, R), синего (Blue, B) и зеленого (Green, G).

Каждый пиксель на экране состоит из трех близко расположенных элементов, светящихся этими цветами.

Цветные дисплеи, использующие такой принцип называются RGB -мониторами.

Код цвета пикселя содержит информацию о доле каждого базового цвета.

схема цветообразования

Если все три составляющих имеют одинаковую интенсивность (яркость), то из их сочетаний можно получить 8 различных цветов (23):

R

G

B

цвет

0

0

0

черный

0

0

1

синий

0

1

0

зеленый

0

1

1

голубой

1

0

0

красный

1

0

1

розовый

1

1

0

коричневый

1

1

1

белый

Формирование цветов при глубине цвета 24 бита:

цвет

интенсивность R

интенсивность G

интенсивность B

черный

00000000

00000000

00000000

красный

11111111

00000000

00000000

зеленый

00000000

11111111

00000000

синий

00000000

00000000

11111111

голубой

00000000

11111111

11111111

желтый

11111111

11111111

00000000

белый

11111111

11111111

11111111

Чем больше глубина цвета, тем шире диапазон доступных цветов и тем точнее их представление в оцифрованном изображении. Пиксель с битовой глубиной, равной единице, имеет лишь 2 (в первой степени) возможных состояния — два цвета: черный или белый. Пиксель с битовой глубиной в 8 единиц имеет 28 или 256 возможных цветовых значений. Пиксель же с битовой глубиной в 24 единицы имеет 224 степени) или 16,7 миллионов возможных значений. Считается, что 24-битные изображения, содержащие 16,7 миллионов цветов, достаточно точно передают краски окружающего нас мира. Как правило, битовое разрешение задается в диапазоне от 1 до 48 бит/пиксель.

При печати на бумаге используется несколько иная цветовая модел: если монитор испускал свет, оттенок получался в результате сложения цветов, то краски - поглощают свет, цвета вычитаются. Поэтому в качестве основных используют голубую (Cyan, C), пурпурную (Magenta, M) и желтую (Yellow, Y) краски. Кроме того, из-за не идеальности красителей, к ним обычно добавляют четвертую -- черную (black, K). Для хранения информации о каждой краске и в этом случае чаще всего используется 1 байт. Такая система кодирования носит название CMYK.

Более грубое представление цвета использует меньшее число разрядов. Например, кодирование цветной графики 16-разрядными числами носит название High Color. В этом случае каждому цвету отводят пять разрядов.

Кодирование звука и видео

Приемы работы со звуковой информацией пришли в компьютерную технику позже всего. Аналитический метод кодирования, применимый к любым звуковым сигналам основан на аналогово-цифровом преобразовании. Исходный аналоговый сигнал представляют как последовательность цифровых сигналов, записанных в двоичном коде. Разрядность преобразования определяет объем данных, соответствующих отдельному цифровому сигналу. При воспроизведении звука выполняют обратное цифро-аналоговое преобразование.

Этот метод кодирования содержит погрешность, так что воспроизводимый сигнал несколько отличается от оригинала.

Метод кодирования на основе табличного синтеза применим только к музыкальным произведением. В заранее подготовленных таблицах хранятся образцы (сэмплы) звуков различных музыкальных инструментов. Числовые коды определяют инструмент, ноту и продолжительность звучания.

При кодировании видеосигнала требуется записать последовательность изображений (кадров) и звук (звуковая дорожка). Формат видеозаписи позволяет включить оба потока данных в одну цифровую последовательность.

9) Глубина́ цве́та (ка́чество цветопереда́чи, би́тность изображе́ния) — термин компьютерной графики, означающий объём памяти в количестве бит, используемых для хранения и представления цвета при кодировании одного пикселя растровой графики или видеоизображения.

Часто выражается единицей бит на пиксел .

С увеличением количества бит в представлении цвета, количество отображаемых цветов стало становиться непрактично-большим для цветовых палитр (20-битная глубина цвета требует больше памяти для сохранения цветовой палитры, чем памяти для сохранения самих пикселей изображения). При большой глубине цвета на практике обычно кодируют яркости красной, зелёной и синей составляющих — такое кодирование обычно называют RGB-моделью.

8-битный «реальный» цвет

Сильно ограниченная, однако «реальная» цветовая схема, в которой 3 бита (8 возможных значений) для красной (R) и зелёной (G) составляющих, и два оставшихся бита на пиксель для кодирования синей (B) составляющей (4 возможных значения), позволяют представить 256 (8 × 8 × 4) различных цвета. Нормальный человеческий глаз менее чувствителен к синей составляющей, чем к красной и зелёной, поэтому синяя составляющая представляется одним битом меньше. Такая схема использовалась в MSX2-серии компьютеров в 1990-х.

Не следует путать такую схему с 8bpp индексным цветом, который может быть представлен выбором различных цветовых палитр.

12-битный «реальный» цвет

12-битный «реальный» цвет кодируется 4 битами (16 возможных значений) для каждой R, G и B-составляющих, что позволяет представить 4096 (16×16×16) различных цветов. Такая глубина цвета иногда используется в простых устройствах с цветными дисплеями (например, в мобильных телефонах).

HighColor

Highcolor или HiColor разработан для представления оттенков «реальной жизни», то есть наиболее удобно воспринимаемый человеческим глазом. Такой цвет кодируется 15 или 16 битами:

LCD Displays

Большинство современных LCD-дисплеев отображают 18-битный цвет (64×64×64 = 262 144 комбинаций), но благодаря технологии dithering разница с truecolor-дисплеями на глаз незначительна.

Truecolor

24-битное изображение

TrueColor приближен к цветам «реального мира», предоставляя 16,7 миллионов различных цветов. Такой цвет наиболее приятен для восприятия человеческим глазом различных фотографий, для обработки изображений.

32-битный «реальный» цвет

«32-битный цвет» — это пример неправильного употребления термина при описании глубины цвета. Заблуждением является то, что 32-битный цвет позволяет представить 2³² = 4 294 967 296 различных оттенка.

В реальности 32-битный цвет является 24-битным (Truecolor) с дополнительным 8-битным каналом, который либо заполнен нулями (не влияет на цвет), либо представляет собой Альфа-канал, который задаёт прозрачность изображения для каждого пикселя.

Причиной, по которой используют «пустой» канал, является стремление оптимизировать работу с видеопамятью, которая у большинства современных компьютеров имеет 32-битную адресацию и 32-битную шину данных.