logo
Шпоры компютерные технологии

30.Основные методы решения уравнений

Основные методы решения уравнений

Ключевые слова: решение уравнения, тождественное преобразование, тождественные преобразования, посторонний корень, потеря корня.

Определение: Решение уравнения – это процесс, состоящий в основном в замене заданного уравнения другим уравнением, ему равносильным. Такая замена называется тождественным преобразованием.

Основные тождественные преобразования:

Замена одного выражения другим, тождественно равным ему. Например, уравнение ( 3x+ 2 ) 2 = 15x+10 можно заменить следующим равносильным: 9x2 + 12x + 4 = 15x + 10

Перенос членов уравнения из одной стороны в другую с обратными знаками. Так, в предыдущем уравнении мы можем перенести все его члены из правой части в левую со знаком « – »: 9x2 + 12x + 4 – 15x – 10 = 0, после чего получим: 9x2 – 3x – 6 = 0 .

Умножение или деление обеих частей уравнения на одно и то же выражение (число), отличное от нуля. Это очень важно, так как новое уравнение может не быть равносильным предыдущему, если выражение, на которое мы умножаем или делим, может быть равно нулю. Уравнение x – 1 = 0 имеет единственный корень x = 1. Умножив обе его части на x – 3 , мы получим уравнение ( x – 1 )( x – 3 ) = 0, у которого два корня: x = 1 и x = 3. Последнее значение не является корнем заданного уравнения x – 1 = 0. Это так называемый посторонний корень. И наоборот, деление может привести к потере корня. Так, если ( x – 1 )( x – 3 ) = 0 является исходным уравнением, то корень x = 3 будет потерян при делении обеих частей уравнения на x – 3 .

Можно возвести обе части уравнения в нечетную степень или извлечь из обеих частей уравнения корень нечетной степени. Необходимо помнить, что: а) возведение в четную степень может привести к приобретению посторонних корней; б) неправильное извлечение корня четной степени может привести к потере корней.

Уравнение 7x = 35 имеет единственный корень x = 5 . Возведя обе части этого уравнения в квадрат, получим уравнение: 49x2 = 1225 ,

имеющее два корня: x = 5 и x = – 5. Последнее значение является посторонним корнем. Неправильное извлечение квадратного корня из обеих

частей уравнения 49x 2 = 1225 даёт в результате 7x = 35,и мы теряем корень x = – 5. Правильное извлечение квадратного корня приводит к

уравнению: | 7x | = 35, а следовательно, к двум случаям: 1) 7x = 35, тогда x = 5 ; 2) – 7x = 35, тогда x = – 5 .Следовательно, при правильном извлечении квадратного корня мы не теряем корней уравнения.

ОДЗ (областью допустимых значений) уравнения называется множество тех значений неизвестной, при которых определены его правая и левая части. Очевидно, что вне ОДЗ решений не существует, однако не все числа, входящие в ОДЗ, служат решениями уравнения. Уравнение можно решить и не находя ОДЗ. С другой стороны, верно найденное ОДЗ и последующий отбор корней с его помощью не может гарантировать отсутствие ошибок.