77.Иерархия классов итераторов объектов
Рис. 1.
Итераторы ввода
Итераторы ввода (input iterator) стоят в самом низу иерархии итераторов. Это наиболее простые из всех итераторов STL, и доступны они только для чтения. Итератор ввода может быть сравнен с другими итераторами на предмет равенства или неравенства, чтобы узнать, не указывают ли два разных итератора на один и тот же объект. Вы можете использовать оператор разыменовывания (*) для прочтения содержимого объекта, на который итератор указывает. Перемещаться от первого элемента, на который указывает итератор ввода, к следующему элементу можно с помощью оператора инкремента (++). Итераторы ввода возвращает только шаблонный класс istream_iterator. Однако, несмотря на то что итераторы ввода возвращаются единственным классом, ссылки на него присутствуют повсеместно.
Проиллюстрируем это на примере алгоритма for_each. Если вы использовали ранее библиотеку контейнеров Borland BIDS, то операция for_each вам уже знакома. В STL она реализована следующим алгоритмом:
template <class InputIterator, class Function>
Function for_each (InputIterator first, InputIterator last, Function f)
{
while (first != last) f(*first++);
return f;
}
В этом примере итератор ввода выступает как первый параметр, указывающий на начало цепочки объектов, а второй параметр - также итератор ввода - это значение "за пределом" для этой цепочки. Тело алгоритма выполняет переход от объекта к объекту, вызывая для каждого значения, на которое указывает итератор ввода first, функцию. Указатель на нее передается в третьем параметре
Итераторы вывода
Если итератор ввода предназначен для чтения данных, то итератор вывода (output iterator) служит для ссылки на область памяти, куда выводятся данные. Итераторы вывода можно встретить повсюду, где происходит хоть какая-то обработка информации средствами STL. Это могут быть алгоритмы (aлгоритмы STL - специальные блоки кода, выполняющие определенные операции по обработке данных) копирования, склейки и т. п. Для данного итератора определены операторы присвоения (=), разыменовывания (*) и инкремента (++). Однако следует помнить, что первые два оператора предполагают, что итератор вывода располагается в левой части выражений, т. е. во время присвоения он должен быть целевым итератором, которому присваиваются значения. Разыменовывание нужно делать лишь для того, чтобы присвоить некое значение объекту, на который итератор ссылается. Итераторы ввода могут быть возвращены итераторами потоков вывода (ostream_iterator) и итераторами вставки inserter, front_inserter и back_inserter (описаны в разделе "Итераторы вставки").
Ниже приведен типичный пример использования итераторов вывода:
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
main(void)
{
int init1[] = {1, 2, 3, 4, 5};
int init2[] = {6, 7, 8, 9, 10};
vector<int> v(10);
merge(init1, init1 + 5, init2, init2 + 5, v.begin());
copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));
}
Однонаправленные итераторы
Если соединить итераторы ввода и вывода, то получится однонаправленный итератор (forward iterator), который может перемещаться по цепочке объектов в одном направлении, за что и получил такое название. Для такого перемещения в итераторе определена операция инкремента (++). И разумеется, в однонаправленном итераторе есть операторы сравнения (== и !=), присвоения (=) и разыменовывания (*). Все эти операторы можно увидеть, если посмотреть, как реализован, например, алгоритм replace, заменяющий одно определенное значение на другое:
template <class ForwardIterator, class T>
void replace (ForwardIterator first, ForwardIterator last, const T& old_value,
const T& new_value)
{ while (first != last)
{ if (*first == old_value) *first = new_value;
++first; }
}
Двунаправленный итератор (bidirectional iterator) аналогичен однонаправленному итератору. В отличие от последнего двунаправленный итератор может перемещаться не только из начала в конец цепочки объектов, но и наоборот. Это становится возможным благодаря наличию оператора декремента (-). На двунаправленных алгоритмах базируются различные алгоритмы, выполняющие реверсивные операции, например reverse. Этот алгоритм меняет местами все объекты в цепочке, на которую ссылаются переданные ему итераторы. Следующий пример был бы невозможен без двунаправленных итераторов:
#include <algorithm>
#include <iostream>
using namespace std;
main(void)
{
int init[] = {1, 2, 3, 4, 5};
reverse(init, init + 5);
copy(init, init + 5, ostream_iterator<int>(cout, "\n"));
}
- 99. Типы диаграмм языка uml
- 98. Унифицированный язык моделирования uml.
- 100. Диаграмма классов (class diagram).
- Концептуальная точка зрения — диаграмма классов описывает модель предметной области, в ней присутствуют только классы прикладных объектов;
- Точка зрения спецификации — диаграмма классов применяется при проектировании информационных систем;
- Точка зрения реализации — диаграмма классов содержит классы, используемые непосредственно в программном коде (при использовании объектно-ориентированных языков программирования).
- 102. Компонентно-ориентированное проектирование
- Объектно-ориентированное проектирование на основе иерархии классов.
- 93. Гетерогенные контейнеры adt шаблонов
- Компонентные классы как основа систем визуального программирования.
- Построение каркасов приложений в среде современных систем программирования.
- Производные классы: наследование.
- Термин наследование и применение к классам и их характеристикам
- Создание объекта производного класса.
- Расширение производного класса.
- Создание объекта производного класса и вызов конструкторов
- Производные классы: полиморфизм.
- Множественное наследование в классе, порождённом от нескольких родительских классов-предков.
- Производные классы: полиморфная функция
- Иерархия классов
- 39.Простые манипуляторы для управления потоком
- Прядок вызова конструкторов в производных классах
- Виртуальные базовые классы.
- Порядок построения виртуальных базовых классов.
- 25. Указатель на абстрактный класс.
- 28.Технология объектно-ориентированного программирования.
- Интерфейс пользователя и абстрактный класс.
- 35.Предопределенные объекты-потоки.
- 29. Применение шаблонов классов и шаблонов функций.
- 30.Объекты класса и указатели на объекты класса.
- 31.Члены данных объекта и указатели на члены данных класса.
- 32.Указатели на функции-члены класса и указатели на статические члены данных.
- 36.Стандартный ввод-вывод.
- 34.Создание и организация взаимодействие потоков ввода-вывода.
- 37.Методы позиционирования потоков.
- 38.Способы управления форматом выходных данных.
- 42.Организация ввода-вывода для пользовательского типа
- 40.Параметризованные манипуляторы и форматирующие функции.
- 41.Состояния потока.
- 43.Методы опроса и установки состояния потока.
- 44.Обработка ошибок в потоке через определение и установку состояния потока.
- 45.Последовательность действий при создании ostream.
- 46.Открытие и закрытие файла.
- 47.Методы ввода-вывода.
- 13.Преобразование типов в производных классах.
- 14.Разрешение области видимости в производных классах
- 15.Виртуальные функции.
- 16.Нестатические компонентные функции класса.
- 17.Применение виртуальных функций.
- 18.Вызов виртуальных функций в конструкторе.
- 19.Вызов полиморфных функций базового класса.
- 20.Вызов полиморфных функций через базовые классы.
- 21.Вызов виртуальной функции через таблицу виртуальных методов.
- 22.Ограничения на использование виртуальных функций.
- 23.Чистая виртуальная функция.
- 24.Абстрактный класс и его использование.
- 80.Контейнер объектов List
- 82.Контейнеры шаблонов fds (Fundamental Data Structures).
- 76.Класс итераторов объектов: внешние и внутренние итераторы.
- 81.Контейнер объектов Stack
- 71.Контейнерные классы объектов: понятие контейнерного класса.
- 72.Итераторы в контейнерных классах объектов как друзья класса.
- 48.Бинарные файлы.
- 49.Чтение бинарных файлов.
- 50.Запись в бинарные файлы.
- 51.Инициализация потоков с помощью конструктора.
- 52.Текстовые файлы для ввода-вывода.
- 60.Дружественные шаблоны.
- 53.Форматирование в памяти с использованием потоков strstream.
- 54.Шаблон класса.
- 69.Механизм обработки исключений.
- 56.Создание шаблонного класса.
- 57.Шаблон функции, объявление.
- 61.Функциональное замыкание при разработке приложений.
- 58.Запись шаблона функции с несколькими обобщенными аргументами.
- 65.Исключение как статический объект.
- 64.Объектно-ориентированный подход к обработке исключений.
- 66.Генерации исключения.
- 85.Гомогенные и гетерогенные контейнеры шаблонов fds.
- 63.Использование конструкторов и деструкторов в роли «вступления» и «заключения».
- 67.Операторы throw и catch.
- 68.Обработчик исключений.
- 70.Понятие контролируемого блока при обработке исключений.
- 84.Способы хранения элементов в контейнерах шаблонов fds.
- 83.Вектора и списки в контейнере шаблонов.
- Стандартные контейнеры библиотеки stl
- 86.Fds контейнеры шаблонов векторов
- 62.Функциональное замыкание через наследование.
- 87.Fds контейнеры шаблонов списков
- 89.Способы реализации и префиксы имен adt-контейнеров шаблонов.
- 88.Контейнеры шаблонов adt (Abstract Data Types) и их классификация.
- 90.Типы adt-контейнеров шаблонов.
- 91.Массивы adt-контейнеров шаблонов.
- 92.Стеки adt-контейнеров шаблонов.
- 78.Контейнер объектов Array
- 74.Класс контейнеров объектов: разбиение контейнеров на группы.
- 77.Иерархия классов итераторов объектов
- 79.Контейнер объектов SortedArray
- 73.Библиотека контейнерного класса структур данных.