Тема 9.Сетевая среда. Кабельные системы. Кабели. Витая пара. Коаксиальный кабель. Оптоволоконный кабель.
Кабели являются наиболее распространенной физической средой передачи. Хотя в недавнее время появились радиосети, сети на инфразвуке, но пока они являются очень дорогими, единичными проектами.
Анализ работы сетей показывает, что большая доля (70 %) отказов сети приходится на кабельные системы. В связи с этим вопросам прокладки кабеля, выбора типа кабеля, тестирования, управления кабельной системой следует уделять чрезвычайное внимание.
Витая пара изначально использовалась в телефонных линиях. Представляет собой несколько проводов, обвитых вокруг друг друга. Взаимная обвивка обеспечивает защиту от собственных и внешних наводок. Витая пара бывает экранированной (TP) и неэкранированной (UTP).
Категории для UТР:
UTP 1 не поддерживает передачу цифровых данных
UTP 2 устарел, скорость передачи до 2 Мбит/сек
UTP 3 способен поддерживать скорость до 10 Мбит/с (класс С)
UTP 4 … до 16 Мбит/с, волновое сопротивление должно составлять 100 Ом в диапазоне частот от 1 Мгц до предельной.
UTP 5 скорость до 100 Мбит/с (класс Д), волновое сопротивление должно составлять 100 Ом в диапазоне частот от 1 Мгц до предельной. Минимальное число скручиваний 26 на 1 м кабеля.
UTP 6 Частота до 200 МГц.
UTP 7 Частота до 600 МГц.
Соединение кабеля с адаптером (сетевой картой) и концентратором производится при помощи 8-контактных соединителей RJ-45.
Достоинства кабеля на витой паре - дешевизна и простота установки. Недостаток - взаимное наложение сигналов между смежными проводами, чувствительность ко внешним электромагнитным полям, возможность несанкционированного перехвата информации, большая степень затухания сигнала в пути.
Экранированная витая пара отличается тем, что содержит электрически заземляемую медную оплетку и алюминевую фольгу. Существуют кабели как с общим экраном, так и с экраном вокруг каждой пары. Экран обеспечивает защиту от внешних электромагнитных полей. Предполагается, что категория 6 будет предназначена для неэкранированных и целиком экранированных кабелей с усовершенствованным соединителем RJ-45. К категории 7 будут относиться только кабели с отдельно экранированными парами, причем применение соединителя RJ-45 не предусмотрено.
Коаксиальный кабель. Способен передавать данные со скоростью до 10 Мбит/сек. Основные типы - толстый Ethernet (12 мм) и тонкий Ethernet (6 мм).
Тонкий маркируется как RG-58. При реализации сети на тонком коаксиале можно сделать максимум 5 сегментов (разделенных повторителями - репитерами) по 185 м, то есть максимальная длина может составить 925 м. Уменьшая длину сегмента (на каждом BNC - потери), можно подключить больше компьютеров, но при этом число компьютеров не должно превышать 150.
Для соединения компьютеров в сети на тонком коаксиале используются Т-коннекторы или цилиндрические соединители типа BNC (British Naval Connector) и 50-омные заглушки (терминаторы). Заглушки устанавливают на обоих концах сетевого сегмента. Расстояние между абонентами должно быть не менее полуметра. Трансиверный кабель не требуется, Т-коннектор вставляется непосредственно в BNC-разъем сетевого адаптера.
Толстый коаксиал дороже, маркируется как RJ-8 или RJ-11. Надежно передает данные на расстояние до 500 м. Для присоединения кабеля к адаптеру требуется трансиверный кабель и трансивер AUI (Attachment Unit Interface интерфейсное устройство соединения). Трансиверный кабель имеет несколько проводников. Для его концевой разделки используют 15-контактные DIX-разъемы типа "вилка". Трансиверный кабель может иметь длину до 50 м в обычном исполнении (до 12,5 м в так называемом офисном варианте). Минимальное расстояние между точками подключения - 2,5 м. Недостаток - сложность установки из-за его толщины и жесткости (например, изгибать его можно по дуге радиусом не менее 3 м), большая стоимость.
Оптоволоконный кабель состоит из уложенных определенным образом, или скрученных определенным образом волоконных световодов и защитного покрытия. Передача данных производится с помощью лазерного или светодиодного передатчика, генерирующих световые импульсы. Перед тем, как попасть в световод, сигнал от излучателя проходит через оптическое согласующее устройство и через оптический разъемный соединитель (коннектор). На принимающем конце сигнал воспринимается фотодиодом, который преобразует его в электрический ток.
Преимущества оптоволоконного кабеля: малое затухание и независимость затухания от частоты сигнала, высокая степень защищенности от внешних электромагнитных влияний, фактическое исключение несанкционированного доступа, малая стоимость и постоянная тенденция к ее снижению. Недостатки: дорогое оборудование при установке сети на таком кабеле, потребность в высокой квалификации персонала, устанавливающего сеть.
В маркировке оптоволоконного кабеля указываются два числа: диаметр центрального проводника и диаметр плакировки, защищающей световолокно. Поверх плакировки кабель одевается в оболочку. При прокладывании оптоволокна следует не забыть, что между узлами прокладывается два кабеля: один для передачи, один для приема.
В зависимости от условий распространения световой волны в центральном кабеле оптические кабели делятся на одномодовые (single mode SM) и многомодовые (multi mode MM). Многомодовая передача осуществляется с помощью светоизлучающего диода. Светоизлучающие диоды – это источники не очень концентрированного света, следовательно, требуют довольно широкого пути передачи. Они используют довольно низкую частоту, поэтому пропускная способность у них ниже. Рассеиваемый сигнал отражается от плакировки, образуя дополнительные лучи. Этот процесс называется модальной дисперсией. Все эти моды накладываются друг на друга, что приводит к искажению и затуханию сигнала (этим определяется длина сегмента!).
К возникновению мод может привести неверное присоединение сетевых устройств (шаткий разъем, соединение под углом).
- Вопросы к предварительной сдаче экзамена.
- Тема 1.Основные понятия.
- Соединения и каналы.
- Типы связи
- Протоколы и службы.
- Уровни модели osi
- Разделение каналов. Мультиплексирование.
- Стек протоколов tcp/ip. История и перспективы стека tcp/ip
- Структура стека tcp/ip. Краткая характеристика протоколов
- Тема 3.Каким образом tcp обеспечивает надежную и быструю доставку. Сегменты tcp
- Организация клиент-серверной связи
- Порты и установление tcp-соединений
- Концепция квитирования
- Реализация скользящего окна в протоколе tcp
- Только положительные квитанции
- Нумерация байт, а не сегментов
- Выбор тайм-аута
- Реакция на перегрузку сети
- Формат сообщений tcp (для ознакомительного чтения)
- Тема 4.Адресация в ip-сетях. Типы адресов: физический (mac-адрес), сетевой (ip-адрес) и символьный (dns-имя).
- Три основных класса ip-адресов. Дополнительные классы.
- Соглашения о специальных адресах: broadcast, multicast, loopback
- Выбор адреса
- Тема 5.Dns и dhcp - серверы. Отображение физических адресов на ip-адреса: протоколы arp и rarp
- Отображение символьных адресов на ip-адреса: служба dns
- Автоматизация процесса назначения ip-адресов узлам сети - протокол dhcp
- Тема 6.Развитие стека tcp/ip: протокол iPv.6
- Адресация в iPv6
- Тема 7.Топологии сетей. Базовые сетевые технологии. Ethernet. Типы сетей
- Топологии сетей.
- Шинная топология.
- Кольцевая топология.
- Топология звезды.
- Гибридная топология.
- Ячеистая топология.
- Архитектуры сетей.
- Адресация Ethernet'а
- Формат кадра Ethernet'а
- Arp, rarp – протоколы. Чем отличаются?
- Подсети
- Как назначать номера сетей и подсетей. Маска подсети.
- Тема 8.Базовые сетевые технологии. Token Ring.
- Скоростные сетевые архитектуры.
- Ethernet 100 Мбит/с.
- Тема 9.Сетевая среда. Кабельные системы. Кабели. Витая пара. Коаксиальный кабель. Оптоволоконный кабель.
- Кабельные системы локальных вычислительных сетей
- Рекомендации по применению кабелей
- Проблемы монтажа кабельных систем
- Тема 10.Основные типы сетевых устройств. Сетевые адаптеры
- Репитеры
- Концентраторы
- Правило «5-4-3-2-1».
- Коммутаторы
- Известны четыре способа коммутации в локальных сетях:
- Три типа функциональной структуры коммутаторов
- Механизмы снижения интенсивности трафика
- Коммутаторы делятся на 4 категории:
- Мосты. Виды (по алгоритму работы). Подвиды «прозрачных» мостов.
- Маршрутизаторы
- Брандмауэры (сетевые фильтры).
- Заключение. Продвижение кадров, пакетов через сетевые устройства.
- Тема 11.Современные протоколы маршрути-зации
- Протоколы вектора расстояния
- Метод расщепления горизонта
- Метод временного отказа от приема сообщений
- Механизм принудительных объявлений
- Метод корректировки отмены маршрута
- Алгоритм диффузионного обновления
- Что такое хорошо и что такое плохо?
- Протокол состояния канала
- Hello! Кто здесь?
- Алгоритм Дейкстры
- Ненавязчивый сервис
- Тема 12.Неоднородные сети. Методика расчета конфигурации сети Ethernet
- Расчет pdv
- Расчет pvv
- Тема 13.Сетевые операционные системы Структура сетевой операционной системы
- Одноранговые сетевые ос и ос с выделенными серверами
- Прикладные протоколы. Ftp
- Прикладные протоколы. Telnet
- Прикладные протоколы. Snmp
- Прикладные протоколы. Smtp, pop. Nntp
- Прикладные протоколы. Icmp.
- Что такое url?
- Url образуют подмножество более общей схемы наименования uri.
- Тема 14.Требования к сети. Архитектура сети. Выбор технологии. Требования к сети.
- Критерии выбора технологии:
- Архитектура сети.
- Оценка трафика сети. Разделение на подсети.
- Подсети
- Как назначать номера сетей и подсетей. Маска подсети.
- Проект сети.
- Непрерывность работы сети. Архивы, запасные серверы, …
- Логическая структура сети. Сетевые ос. Сетевые протоколы
- Размер пакета, ячейки, кадры
- Раут - маршрутизация в подсетях.
- Тема 15.Php и другие серверные технологии.
- Динамические технологии на стороне клиента.
- Динамические технологии на стороне сервера.
- Тема 16.Распределенная обработка. Безопасность. Эффективность. Модель распределенной обработки информации.
- Безопасность информации. Базовые функциональные профили. Полные функциональные профили. Методы оценки эффективности информационных сетей.
- Сетевые программные и технические средства информационных сетей.