48. Прямая как линия пересечения двух плоскостей.
Пусть даны две плоскости , причем они не параллельны, т. е. Тогда прямую можно рассматривать как прямую пересечения двух плоскостей. . Общее уравнение прямой линии в пространстве: Так как прямая принадлежит плоскости , а – вектор нормали, то . . Тогда за вектор естественно принять вектор S, равный векторному произведению векторов и . . - координаты базисного вектора, – коэффициенты плоскости , – коэффициенты плоскости . За точку на прямой можно выбрать любую точку, координаты которой удовлетворяют общим уравнениям прямой, т. е. являются решениями системы уравнений (1). Но так как уравнений два, а неизвестных – три, то такая система имеет бесчисленное число решений. Тогда одна из неизвестных принимается за параметр или приравнивается к нулю и находятся две другие координаты точки прямой.
- 1. Сложение матриц и умножение матрицы на число.
- 2. Умножение матриц. Невырожденные квадратные матрицы.
- 3. Обратная матрица. Алгоритм нахождения обратной матрицы.
- 4. Решение матричных уравнений вида , .
- 5. Определители и их свойства.
- 6. Непосредственное вычисление определителей второго и третьего порядков.
- 7. Формула разложения определителя по строкам и столбцам. Теорема Лапласа.
- 8. Ранг матрицы. Нахождение ранга матрицы.
- 9. Системы линейных алгебраических уравнений.
- 10. Решение систем линейных алгебраических уравнений методом Гаусса.
- 11. Нахождение решения системы линейных алгебраических уравнений по формуле Крамера.
- 12. Нахождение решения системы линейных алгебраических уравнений методом обратной матрицы.
- 14. Теорема Кронекера-Капелли.
- 15. Арифметические векторы и линейные операции над ними.
- 16. Линейная зависимость системы векторов.
- 17. Базис и размерность линейного пространства. Координаты вектора в данном базисе.
- 22. Схема Горнера и корни многочленов.
- 23. Теорема Безу. Нод многочленов и алгоритм Евклида.
- 24. Комплексные числа и действия над ними.
- 25. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числа.
- 26. Алгебраическая и тригонометрическая формы записи комплексных чисел.
- 27. Корни n-ой степени из комплексного числа.
- 28. Линейные преобразования пространства . Линейные операторы.
- 29. Матрица линейного оператора.
- 30. Собственные значения и собственные векторы линейных операторов.
- 31. Собственные значения квадратных матриц.
- 32. Квадратичные формы, их матрицы в данном базисе.
- 33. Приведение квадратичной формы к нормальному виду методом Лагранжа.
- 34. Приведение квадратичной формы к каноническому виду при помощи ортогонального преобразования.
- 35. Закон инерции квадратичных форм.
- 36. Критерий Сильвестра знакоопределенности квадратичных форм.
- 37. Уравнение плоскости, проходящей через данную точку.
- 38. Общее уравнение плоскости и его исследование.
- 39. Уравнение плоскости, проходящей через три данные точки.
- 40. Угол между двумя плоскостями. Условия параллельности и перпендикулярности.
- 41. Общее уравнение прямой на плоскости и его исследование.
- 42. Уравнение прямой в отрезках.
- 43. Уравнение прямой с угловым коэффициентом.
- 44. Уравнение прямой, проходящей через данную точку в заданном направлении.
- 45. Угол между двумя прямыми на плоскости. Условие параллельности и перпендикулярности прямых.
- 46. Виды уравнения прямой: векторное, параметрическое и каноническое уравнения прямой в пространстве.
- 47. Уравнение прямой в пространстве, проходящей через две данные точки.
- 48. Прямая как линия пересечения двух плоскостей.
- 49. Окружность. Определение. Каноническое уравнение.
- 50. Эллипс. Определение. Каноническое уравнение. Свойства.
- 51. Гипербола. Определение. Каноническое уравнение. Свойства.
- 52. Парабола. Определение. Каноническое уравнение. Свойства.