logo search
Нейронные_сети_1

3.9.1Черты современных архитектур.

Классические исследования, выполненные в послевоенные годы и дальнейших бурный прогресс в нейроинформатике в 80-е годы определили некоторые общие черты перспективных архитектур и направления исследований. И, хотя любые оценки в этой области весьма суб'ективны, автор счел возможным изложить свою точку зрения на наблюдающиеся тенденции. Остановимся на некоторых из них.

1) Плотное сопряжение теоретических исследований с поиском новых физических принципов и физических сред для аппаратной реализации нейронных сетей. Здесь прежде всего следует отметить оптичекие системы, как линейные, так и нелинейные: фурье-оптика, голограммы, нелинейные фоторефрактивные кристаллы, оптические волноводные волокна, электронно-оптические умножители и другие. Перспективными также являются среды с естественными автоволновыми свойствами (химические и биологические). Все эти среды реализуют важное свойство массивной параллельности при обработке информации. Кроме того, они, как правило, содержат механизмы "саморегулирования", позволяющие организовывать обучение без учителя.

2) Иерархичность архитектур и разделение функций нейронов. В современных архитектурах используются слои или отдельные нейроны нескольких различных типов: командные нейроны-переключатели, пороговые нейроны, нейронные слои с латеральным торможением, работающие по принципу "победитель забирает все". Априорное разделение функций нейронов значительно упрощает обучение, так как сеть изначально структурно соответствует задаче

3) Преимущественное использование методов обучения без учителя, за счет самоорганизации. Эти методы имеют глубокие биологические основания, они обеспечивают локальный характер обучения. Это позволяет не применять глобальную связность сети. С учителем обучаются только внешние, выходные слои нейронов, причем роль учителя часто сводится только к общей эксперной оценке качества работы сети23.

4) Ориентация исследований и архитектур непосредственно на приложения. Модели общего характера, такие как сеть Хопфилда или многослойный персептрон, в основном представляют научный интерес, так как допускают относительно полное теоретическое исследование.

Этот список является, разумеется, далеко не полным. В него не включены, наприме, современные исследования в области гибридных неронно-экспертных систем, использующих как формальную логику, так и ассоциативное узнавание. Читатель также может и сам проанализировать рассматриваемые типы нейронных сетей на предмет выявления общих свойств и тенденций.