3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
К настоящему времени сформировался обширный рынок нейросетевых продуктов. Подавляющее большинство продуктов представлено в виде моделирующего программного обеспечения. Ведущие фирмы разрабатывают также и специализированные нейрочипы или нейроплаты в виде приставок к обычным ЭВМ (как правило, персональным ЭВМ линии IBM PC AT). При этом программы могут работать как без нейро-приставок, так и с ними. В последнем случае быстродействие гибридной ЭВМ возрастает в сотни и тысячи раз.
Перечислим некоторые наиболее извесные и популярные нейросистемы и их производителей.
Пакет программ NeuralWorks Professional II Plus. Это одна из последних версий программного продукта NeuralWorks, разработаного фирмой NeuralWare. Пакет содержит программные модели десятков архитектур нейронных сетей (в том числе, некоторые из рассмотренных в этой книге). Фирма объявила также о выпуске версии пакета для рабочих станций типа SUN и параллельных процессоров nCUBE.
Пакет программ ExploreNet 3000. Разработка фирмы HNC, основанной профессором Робертом Хехт-Нильсеном. Пакет предоставляет широкие фозможности по моделированию и управлению данными. В качестве ускорителя используется аппаратные разработки фирмы HNC - нейропроцессоры ANZA и ANZA+, являющиеся одними из первых аппаратных решений. Фирма предложила также средство для разработки прикладных программ - специализированный язык программирования AXON, основанный на языке C.
Оболочка NeuroShell 2.0. Достоинством этой программы является совместимость с популярным пакетом управления данными MicroSoft Excel, что делает продукт удобным для массового использования.
В России известны также разработки НИИ многопроцессорных вычислительных систем, г.Таганрог (СБИС для цифровых нейрокомпьютеров, имеющая около 100000 вентилей и работающая на частоте 20 МГц), Московского центра нейрокомпьютеров (аппаратные системы на основе транспьютеров). Среди программных систем следует отметить разработки кафедры нейрокибернетики Красноярского университета, системы распознавания образов НИИ нейрокибернетики Ростовского университета и Института прикладной физики в Нижнем Новгороде.
В 1993 немецкая фирма Simens объявила о выпуске самого быстродействующего на сегодняшний день нейрокомпьютера, названного24 SYNAPSE-I. Этот нейрокомпьютер в целом представляет собой систему из управляющей (host) машины и специализированного нейропроцессора с локальной памятью для синаптических весов. В каждой нейросетевой парадигме можно выделить относительно небольшой набор операций, специфических для нейронных сетей, который может быть очень эффективно в параллельном режиме выполнен на специализированном процессоре. К таким операциям относятся, например, умножение и сложение матриц и векторов, транспонирование матриц, вычисление пороговых преобразований, параллельное вычисление табличных функций и другие. Оставшиеся фрагменты алгоритма, имеющие развитую логику, но требующие обычно лишь несколько процентов от общего времени вычислений, могут быть успешно выполнены и на обычной ЭВМ. В нейрокомпьютере SYNAPSE-1 в качестве такой host-машины выступает рабочая станция Sun Sparc Station II. Плановое ускорение на нейро-операциях в SYNAPSE-1 будет составлять 8000 раз (!) по сравнению с host-станцией. Для пользователя предусмотрены удобный проблемно-ориентированный на нейросети язык программирования nAPL, среда программирования на языке C++ и удобная UNIX-совместимая операционная система.
Перечисленные выше нейросистемы являются относительно дорогими и предназначены в основном для профессионального использования. В учебно-исследовательских целях в приложении к этой книге приведена простая программа, реализующая алгоритмы обучения и распознавания однослойного персептрона. Читатель, знакомый с языком программирования Паскаль, может использовать эту программу, снабдив ее модулями ввода-вывода, для экспериментирования с нейроной сетью, а также в качестве введения в технологию создания нейропрограммного обеспечения.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы