3.9.2Сегодняшний день нейронауки.
Некоторые сведения из истории нейронауки читатель уже почерпнул во введении. Фундаментальные исследования в теории нейронных сетей и интеллектуальных методов обработки информации достигли новой фазы после ряда состоявшихся начиная с 1986 г. специализированных конференций, непосредственно посвященных нейронауке. Осенью 1988 г. было учреждено Международное общество нейросетей (INNS - International Neural Networks Society), которое координирует мировую "нейроактивность".
Предстоящий летом 1994 г. Всемирный конгресс по нейронным сетям, организуемый этим обществом, подведет основные итоги и проявит современное состояние фундаментальных исследований. Для охвата тенденций развития нейронауки в целом мы остановимся на основных тематических вопросах программы этого конгресса.
1. Биологическое зрение. Этот раздел возглавляет С.Гроссберг.
2. Машинное зрение. Раздел охватывает аспекты моделирования зрительных функций в технических системах. Особое внимание будет уделено принципам избирательного внимания к объектам зрительной сцены.
3. Речь и язык. Различные аспекты синтеза и распознавания речи.
4. Биологические нейронные сети. Тематика раздела охватывает свойства отдельных нейронов, нейронных сетей управления движением и слухом, аспекты обучения в биологических сетях, а также пути перехода от биологических нейронов к искусственным (кремниевым).
5. Нейроуправление и робототехника.
6. Обучение с учителем.
7. Обучение без учителя.
8. Распознавание образов.
9. Прогноз и идентификация систем. Рассматриваются методы кибернетического моделирования сложных систем на базе нейронных сетей.
10. Нейронаука о сознании. Аспекты организации и моделирования высшей нервной деятельности.
11. Связь науки о сознании с искусственным интеллектом.
12. Нечеткие нейронные системы. Построение нейромоделей нечеткой логики.
13. Обработка сигналов. Одна из старейших областей приложений нейронных сетей и теории распознавания образов - выделение и анализ свойств сигнала из шума.
14. Нейродинамика и хаос. Сюда относятся свойства нейронных сетей, как нелинейных динамических систем.
15. Аппаратные реализации. Ключевой вопрос перспективных приложений - новые физические принципы и среды для обработки информации.
16. Ассоциативная память.
17. Приложения. Данный раздел будет, по-видимому, наиболее широко представлен.
18. Нейровычисления и виртуальная реальность. Здесь рассматривается возможность применения нейронных сетей и высокопараллельных вычислений на них для создания искусственной реальности. Сложная аппаратно-программная система виртуальной реальности моделирует основные сигналы, воспринимаемые человеком от внешнего мира, и реагирует на его действия, подменяя собой реальный мир.
19. Сети и системная нейронаука. Основное внимание в этом разделе будет уделено временному поведению сигналов в нейронных контурах как биологических, так и искусственных сетей.
20. Математические основания.
Некоторые разделы, такие, например, как обучение с учителем и без учителя, нейродинамика и ассоциативная память, распознавание образов, решение математических задач на нейронных сетях, в виде основных классических результатов были затронуты в этой книге. Другие, возможно, знакомы читателю из других книг (в том числе, и из научно-фантастических). Некоторые показались совершенно новыми. По всем из них мы с нетерпением будем ждать результатов работы конгресса.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы