3.8.6Фаза поиска.
В результате действия тормозящего сигнала сброса все нейроны слоя распознавания получат нулевые выходы, и, следовательно, нейрон управления 1 примет единичное значение активности. Снова выходной сигнал слоя сравнения C установится равным в точности X, как и в начале работы сети. Однако теперь в конкурентной борьбе в слое распознавания предыдущий нейрон-победитель не участвует, и будет найдена новая категория - кандидат. После чего опять повторяется фаза сравнения.
Итерационный процесс поиска завершается двумя возможными способами. 1) Найдется запомненная категория, сходство которой с входным вектором X будет достаточным для успешной классификации. После этого происходит обучающий цикл, в котором модифицируются веса bi и ti векторов B и T возбужденного нейрона, осуществившего классификацию. 2) В процессе поиска все запомненные категории окажутся проверенными, но ни одна из них не дала требуемого сходства. В этом случае входной образ X об'является новым для нейросети, и ему выделяется новый нейрон в слое распознавания. Весовые вектора этого нейрона B и T устанавливаются равными вектору X.
Важно понимать, почему вообще требуется фаза поиска и окончательный результат классификации не возникает с первой попытки. Внимательный читатель вероятно уже обнаружил ответ на это вопрос. Обучение и функционирование сети АРТ происходит одновременно. Нейрон-победитель определяет в пространстве входных векторов ближайший к заданному входному образу вектор памяти, и если бы все черты исходного вектора были критическими, это и было бы верной классификацией. Однако множество критических черт стабилизируется лишь после относительно длительного обучения. На данной фазе обучения лишь некоторые компоненты входного вектора принадлежат актуальному множеству критических черт, поэтому может найтись другой нейрон-классификатор, который на множестве критических черт окажется ближе к исходному образу. Он и определяется в результате поиска.
Отметим, что после относительной стабилизации процесса обучения классификация выполняется без фазы поиска. В этом случае говорят, что формируется прямой доступ к памяти. Возникновение в процессе обучения прямого доступа доказывается в теории АРТ.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы