3.5.4Ассоциативность памяти и задача распознавания образов
Динамический процесс последовательной смены состояний нейронной сети Хопфилда завершается в некотором стационарном состоянии, являющемся локальным минимумом энергетической функции E(S). Невозрастание энергии в процессе динамики приводит к выбору такого локального минимума S, в бассейн притяжения которого попадает начальное состояние (исходный, пред'являемый сети образ) S0. В этом случае также говорят, что состояние S0 находится в чаше минимума S.
При последовательной динамике в качестве стационарного состояния будет выбран такой образ S, который потребует минимального числа изменений состояний отдельных нейронов. Поскольку для двух двоичных векторов минимальное число изменений компонент, переводящее один вектор в другой, является расстоянием Хемминга rH(S,S0), то можно заключить, что динамика сети заканчивается в ближайшем по Хеммингу локальном минимуме энергии.
Пусть состояние S соответствует некоторому идеальному образу памяти. Тогда эволюцию от состояния S0 к состоянию S можно сравнить с процедурой постепенного восстановления идеального образа S по его искаженной (зашумленной или неполной) копии S0 . Память с такими свойствами процесса считывания информации является ассоциативной13. При поиске искаженные части целого восстанавливаются по имеющимся неискаженным частям на основе ассоциативных связей между ними.
Ассоциативный характер памяти сети Хопфилда качественно отличает ее от обычной, адресной, компьютерной памяти. В последней извлечение необходимой информации происходит по адресу ее начальной точки (ячейки памяти). Потеря адреса (или даже отного бита адреса) приводит к потере доступа ко всему информационному фрагменту. При использовании ассоциативной памяти доступ к информации производится непосредственно по ее содержанию, т.е. по частично известным искаженным фрагментам. Потеря части информации или ее информационное зашумление не приводит к катастрофическому ограничению доступа, если оставшейся информации достаточно для извлечения идеального образа.
Поиск идеального образа по имеющейся неполной или зашумленной его версии называется задачей распознавания образов. В нашей лекции особенности решения этой задачи нейронной сетью Хопфилда будут продемонстрированы на примерах, которые получены с использованием модели сети на персональной ЭВМ.
В рассматриваемой модели сеть содержала 100 нейронов, упорядоченных в матрицу 10´10. Сеть обучалась по правилу Хебба на трех идеальных образах - шрифтовых начертаниях латинских букв M, A и G (Рис. 8.3.). После обучения нейросети в качестве начальных состояний нейронов пред'являлись различные искаженные версии образов, которые в дальнейшем эволюционировали с последовательной динамикой к стационарным состояниям.
Рис. 8.3. Идеальные образы обучающей выборки. Темные квадратики соответствуют нейронам в состоянии +1, светлые -1.
Для каждой пары изображений на рисунках этой страницы, левый образ является начальным состоянием, а правый - результатом работы сети - достигнутым стационарным состоянием.
Рис. 8.4. (A) - Один из идеальных образов является стационарной точкой. (Б) - Образ, заданный другим шрифтом, удачно распознается.
Рис. 8.5. (A,Б) - Образы с информационным шумом удачно распознаются.
Рис. 8.6. Образ может быть распознан по небольшому фрагменту.
Рис. 8.7. (A) - Пример релаксации к ложному образу. (Б) - Добавление информации к левой картинке (А) приводит к правильному распознаванию.
Образ на Рис. 8.4.(А) был выбран для тестирования адекватности поведения на идеальной задаче, когда пред'явленное изображение точно соотвествует информации в памяти. В этом случае за один шаг было достигнуто стационарное состояние. Образ на Рис. 8.4.(Б) характерен для задач распознавания текста независимо от типа шрифта. Начальное и конечное изображения безусловно похожи, но попробуйте это об'яснить машине!
Задания на Рис. 8.5 характерны для практических приложений. Нейросетевая система способна распознавать практически полностью зашумленные образы. Задачи, соответствующие Рис. 8.6. и 8.7.(Б), демонстрируют замечательное свойство сети Хопфилда ассоциативно узнавать образ по его небольшому фрагменту. Важнейшей особенностью работы сети является генерация ложных образов. Пример релаксации к ложному образу показан на Рис. 8.7.(А). Ложный образ является устойчивым локальным экстремумом энергии, но не соответствует никакому идеальному образу. Он является в некотором смысле собирательным образом, наследующим черты идеальных собратьев. Ситуация с ложным образом эквивалентна нашему "Где-то я уже это видел".
В данной простейшей задаче ложный образ является "неверным" решением, и поэтому вреден. Однако, можно надеяться, что такая склонность сети к обобщениям наверняка может быть использована. Характерно, что при увеличении об'ема полезной информации (сравните Рис. 8.7.(А) и (Б)), исходное состояние попадает в область притяжения требуемого стационарного состояния, и образ распознается.
__________________________
Несмотря на интересные качества, нейронная сеть в классической модели Хопфилда далека от совершенства. Она обладает относительно скромным об'емом памяти, пропорциональным числу нейронов сети N, в то время как системы адресной памяти могут хранить до 2N различных образов, используя N битов. Кроме того, нейронные сети Хопфилда не могут решить задачу распознавания, если изображение смещено или повернуто относительно его исходного запомненного состояния. Эти и другие недостатки сегодня определяют общее отношение к модели Хопфилда, скорее как к теоретическому построению, удобному для исследований, чем как повседневно используемому практическому средству.
На следующих лекциях мы рассмотрим развитие модели Хопфилда, модификации правила Хебба, увеличивающие об'ем памяти, а также приложения вероятностных обобщений модели Хопфилда к задачам комбинаторной оптимизации.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы