3.2.2Классификация и категоризация.
В случае, когда выходное признаковое пространство представляет собой дискретный перечень из двух или более групп данных, задачей нейронной сети является отнесение входных векторов к одной из этих групп. В этом случае говорят, что нейросетевая система выполняет классификацию или категоризацию данных.
Эти две интеллектуальные задачи, по-видимому, следует отличать друг от друга. Термин класс можно определить, как совокупность предметов или понятий (образов), выделенных и сгруппированных по определенным признакам или правилам. Под классификацией мы будем понимать отнесение некоторого образа к классу, выполняемое по этим формальным правилам по совокупности признаков. Категория же (если отвлечься от специфического философского характера этого понятия) определяет лишь некоторые общие свойства образов и связи между ними. Задача категоризации, т.е. определения отношения данного образа к некоторой категории, гораздо менее определена, чем задача отношения к классу. Границы различных категорий являются нечеткими, расплывчатыми, и обычно сама категория понимается не через формальное определение, а только в сравнении с другими категориями. Границы классов, напротив, определены достаточно точно - образ относится к данному классу, если известно, что он обладает необходимым числом признаков, характерных для этого класса.
Итак, задачей систем-классификаторов является установление принадлежности образа к одному из формально определенных классов. Примерами такой задачи является задача классификации растений в ботанике, классификация химических веществ по их свойствам и типам возможных реакций, в которые они вступают, и другие. Формальные признаки могут быть определены посредством правил типа “если..-то..”, а системы, оперирующие с такими правилами, получили название экспертных систем. Традиционной областью применения классификаторов на нейронных сетях является экспериментальная физика высоких энергий, где одной из актуальных задач выступает выделение среди множества зарегистрированных в эксперименте событий с элементарными частицами событий, представляющих интерес для данного эксперимента.
Проблема категоризации находится на ступеньку выше по сложности в сравнении с класиификацией. Особенность ее заключается в том, что помимо отнесения образа к какой-либо группе, требуется определить сами эти группы, т.е. сформировать категории.
В случае обучения с учителем (например, в персептроне) формирование категорий происходит методом проб и ошибок на основе примеров с известными ответами, предоставляемыми экспертом. Формирование категорий весьма напоминает процесс обучения у живых организмов, поэтому обычно эксперта называют “супервизором” или учителем. Учитель управляет обучением при помощи изменения параметров связей и, реже, самой топологии сети.
Задачей системы-категоризатора является формирование обобщающих признаков в совокупности примеров. При увеличении числа примеров несущественные, случайные признаки сглаживаются, а часто встречающиеся - усиливаются, при этом происходит постепенное уточнение границ категорий. Хорошо обученная нейросетевая система способна извлекать признаки из новых примеров, ранее неизвестных системе, и принимать на их основе приемлимые решения.
Важно отметить различие в характере неявных “знаний”, запомненных искусственной нейронной сетью, и явных, формальных “знаний”, заложенных в экспертных системах. Некоторые сходства и различия представлены в следующей таблице.
| Экспертные системы (ЭС) | Нейросетевые системы (НС) |
Источник знаний | Формализованный опыт эксперта, выраженный в виде логических утверждений - правил и фактов, безусловно принимаемых системой | Совокупный опыт эксперта-учителя, отбирающего примеры для обучения + индивидуальный опыт обучающейся на этих примерах нейронной сети |
Характер знаний | Формально-логическое “левополушарное” знание в виде правил | Ассоциативное “правополушарное” знание в виде связей между нейронами сети |
Развитие знаний | В форме расширения совокупности правил и фактов (базы знаний) | В форме дообучения на дополнительной последовательности примеров, с уточнением границ категорий и формированием новых категорий |
Роль эксперта | Задает на основе правил полный объем знаний экспертной системы | Отбирает характерные примеры, не формулируя специально обоснование своего выбора |
Роль искусственной системы | Поиск цепочки фактов и правил для доказательства суждения | Формирование индивидуального опыта в форме категорий, получаемых на основе примеров и категоризация образов |
Различия в характере экспертных и нейросетевых ситем обуславливают и различия в их сферах применения. Экспертные системы применяются в узких предметных областях с хорошо структурированными знаниями, наример в классификации неисправностей конкретного типа оборудования, фармокологии, анализе химсостава проб и т.д. Нейронные сети применяютмся кроме перечисленных областей и в задачах с плохо структурированной информацией, например при распознавании образов, рукописного текста, анализе речи и т.д.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы