Рекурсия
Рекурсия является одним из наиболее мощных средств в арсенале программиста. Рекурсивные структуры данных и рекурсивные методы широко используются при построении программных систем. Рекурсивные методы, как правило, наиболее всего удобны при работе с рекурсивными структурами данных - списками, деревьями. Рекурсивные методы обхода деревьев служат классическим примером.
Определение 6 (рекурсивного метода): метод P (процедура или функция) называется рекурсивным, если при выполнении тела метода происходит вызов метода P.
Рекурсия может быть прямой, если вызов P происходит непосредственно в теле метода P. Рекурсия может быть косвенной, если в теле P вызывается метод Q (эта цепочка может быть продолжена), в теле которого вызывается метод P. Определения методов P и Q взаимно рекурсивны, если в теле метода Q вызывается метод P, вызывающий, в свою очередь, метод Q.
Для того чтобы рекурсия не приводила к зацикливанию, в тело нормального рекурсивного метода всегда встраивается оператор выбора, одна из ветвей которого не содержит рекурсивных вызовов. Если в теле рекурсивного метода рекурсивный вызов встречается только один раз, значит, что рекурсию можно заменить обычным циклом, что приводит к более эффективной программе, поскольку реализация рекурсии требует временных затрат и работы со стековой памятью. Приведу вначале простейший пример рекурсивного определения функции, вычисляющей факториал целого числа:
public long factorial(int n)
{
if (n<=1) return(1);
else return(n*factorial(n-1));
}//factorial
Функция factorial является примером прямого рекурсивного определения - в ее теле она сама себя вызывает. Здесь, как и положено, есть нерекурсивная ветвь, завершающая вычисления, когда n становится равным единице. Это пример так называемой "хвостовой" рекурсии, когда в теле встречается ровно один рекурсивный вызов, стоящий в конце соответствующего выражения. Хвостовую рекурсию намного проще записать в виде обычного цикла. Вот циклическое определение той же функции:
public long fact(int n)
{
long res =1;
for(int i = 2; i <=n; i++) res*=i;
return(res);
}//fact
Конечно, циклическое определение проще, понятнее и эффективнее, и применять рекурсию в подобных ситуациях не следует. Интересно сравнить время вычислений, дающее некоторое представление о том, насколько эффективно реализуется рекурсия. Вот соответствующий тест, решающий эту задачу:
public void TestTailRec()
{
Hanoi han = new Hanoi(5);
long time1, time2;
long f=0;
time1 = getTimeInMilliseconds();
for(int i = 1; i <1000000; i++)f =han.fact(15);
time2 =getTimeInMilliseconds();
Console.WriteLine(" f= {0}, " + "Время работы
циклической процедуры: {1}",f,time2 -time1);
time1 = getTimeInMilliseconds();
for(int i = 1; i <1000000; i++)f =han.factorial(15);
time2 =getTimeInMilliseconds();
Console.WriteLine(" f= {0}, " + "Время работы
рекурсивной процедуры: {1}",f,time2 -time1);
}
Каждая из функций вызывается в цикле, работающем 1000000 раз. До начала цикла и после его окончания вычисляется текущее время. Разность этих времен и дает оценку времени работы функций. Обе функции вычисляют факториал числа 15.
Проводить сравнение эффективности работы различных вариантов - это частый прием, используемый при разработке программ. И я им буду пользоваться неоднократно. Встроенный тип DateTime обеспечивает необходимую поддержку для получения текущего времени. Он совершенно необходим, когда приходится работать с датами. Я не буду подробно описывать его многочисленные статические и динамические методы и свойства. Ограничусь лишь приведением функции, которую я написал для получения текущего времени, измеряемого в миллисекундах. Статический метод Now класса DateTime возвращает объект этого класса, соответствующий дате и времени в момент создания объекта. Многочисленные свойства этого объекта позволяют извлечь требуемые характеристики. Приведу текст функции getTimeInMilliseconds:
long getTimeInMilliseconds()
{
DateTime time = DateTime.Now;
return(((time.Hour*60 + time.Minute)*60 + time.Second)*1000
+ time.Millisecond);
}
Результаты измерений времени работы рекурсивного и циклического вариантов функций слегка отличаются от запуска к запуску, но порядок остается одним и тем же. Эти результаты показаны на рис. 10.1.
Рис. 10.1. Сравнение времени работы циклической и рекурсивной функций
Вовсе не обязательно, что рекурсивные методы будут работать медленнее нерекурсивных. Классическим примером являются методы сортировки. Известно, что время работы нерекурсивной пузырьковой сортировки имеет порядок c*n2, где c - некоторая константа. Для рекурсивной процедуры сортировки слиянием время работы - q*n*log(n), где q - константа. Понятно, что для больших n сортировка слиянием работает быстрее, независимо от соотношения значений констант. Сортировка слиянием - хороший пример применения рекурсивных методов. Она демонстрирует известный прием, называемый "разделяй и властвуй". Его суть в том, что исходная задача разбивается на подзадачи меньшей размерности, допускающие решение тем же алгоритмом. Решения отдельных подзадач затем объединяются, давая решение исходной задачи. В задаче сортировки исходный массив размерности n можно разбить на два массива размерности n/2, для каждого из которых рекурсивно вызывается метод сортировки слиянием. Полученные отсортированные массивы сливаются в единый массив с сохранением упорядоченности.
На примере сортировки слиянием покажем, как можно оценить время работы рекурсивной процедуры. Обозначим через T(n) время работы процедуры на массиве размерности n. Учитывая, что слияние можно выполнить за линейное время, справедливо следующее соотношение:
T(n) = 2T(n/2) + cn
Предположим для простоты, что n задается степенью числа 2, то есть n = 2k. Тогда наше соотношение имеет вид:
T(2k) = 2T(2k-1) + c2k
Полагая, что T(1) =c, путем несложных преобразований, используя индукцию, можно получить окончательный результат:
T(2k) = c*k*2k = c*n*log(n)
Известно, что это - лучшее по порядку время решения задачи сортировки. Когда исходную задачу удается разделить на подзадачи одинаковой размерности, то, при условии существования линейного алгоритма слияния, рекурсивный алгоритм имеет аналогичный порядок сложности. К сожалению, не всегда удается исходную задачу разбить на k подзадач одинаковой размерности n/k. Часто такое разбиение не представляется возможным.
- 1. Лекция: Visual Studio .Net, Framework .Net
- Открытость
- Модульность
- Виртуальная машина
- Дизассемблер и ассемблер
- Метаданные
- Сборщик мусора - Garbage Collector - и управление памятью
- Исключительные ситуации
- События
- Общие спецификации и совместимые модули
- 2. Лекция: Язык c# и первые проекты
- Создание c#
- Виды проектов
- Консольный проект
- Windows-проект
- Начало начал - точка "большого взрыва"
- Выполнение проекта по умолчанию после "большого взрыва"
- Проект WindowsHello
- Общий взгляд
- Система типов
- Типы или классы? и типы, и классы
- Семантика присваивания
- Преобразование к типу object
- Примеры преобразований
- Семантика присваивания. Преобразования между ссылочными и значимыми типами
- Операции "упаковать" и "распаковать" (boxing и unboxing).
- 4. Лекция: Преобразования типов
- Где, как и когда выполняются преобразования типов?
- Преобразования ссылочных типов
- Преобразования типов в выражениях
- Преобразования внутри арифметического типа
- Преобразования и класс Convert
- Проверяемые преобразования
- Исключения и охраняемые блоки. Первое знакомство
- Опасные вычисления в охраняемых проверяемых блоках
- Опасные вычисления в охраняемых непроверяемых блоках
- Опасные преобразования и методы класса Convert
- 5. Лекция: Переменные и выражения
- Объявление переменных
- Время жизни и область видимости переменных
- Глобальные переменные уровня модуля. Существуют ли они в c#?
- Int X,y; //координаты точки
- Локальные переменные
- Глобальные переменные уровня процедуры. Существуют ли?
- Константы
- Выражения
- Приоритет и порядок выполнения операций
- Перегрузка операций
- Операции sizeof и typeof
- Как получить подробную информацию о классе?
- Статические поля и методы арифметических классов
- Логические операции
- Условное выражение
- Операция приведения к типу
- Присваивание
- Специальные случаи присваивания
- Определенное присваивание
- Еще раз о семантике присваивания
- Рассмотрим объявления:
- Класс Math и его функции
- Класс Random и его функции
- Блок или составной оператор
- If(выражение_1) оператор_1
- If(выражение1) if(выражение2) if(выражение3) ...
- Оператор switch
- Операторы break и continue
- Циклы While
- Цикл foreach
- Процедуры и функции - функциональные модули
- Процедуры и функции - методы класса
- Процедуры и функции. Отличия
- Описание методов (процедур и функций). Синтаксис
- Список формальных аргументов
- Тело метода
- Вызов метода. Синтаксис
- О соответствии списков формальных и фактических аргументов
- Вызов метода. Семантика
- Поля класса или функции без аргументов?
- Пример: две версии класса Account
- Функции с побочным эффектом
- Методы. Перегрузка
- 10. Лекция: Корректность методов. Рекурсия
- Корректность методов
- Инварианты и варианты цикла
- Рекурсия
- Рекурсивное решение задачи "Ханойские башни"
- Быстрая сортировка Хоара
- 11. Лекция: Массивы языка c#
- Общий взгляд
- Динамические массивы
- Многомерные массивы
- Массивы массивов
- Процедуры и массивы
- Класс Array
- Массивы как коллекции
- Сортировка и поиск. Статические методы класса Array
- Сводка свойств и методов класса Array
- Класс Object и массивы
- Массивы объектов
- Массивы. Семантика присваивания
- Общий взгляд
- Класс char[] - массив символов
- Операции над строками
- Строковые константы
- Неизменяемый класс string
- Статические свойства и методы класса String
- Метод Format
- Методы Join и Split
- Динамические методы класса String
- Операции над строками
- Основные методы
- Емкость буфера
- Пространство имен RegularExpression и классы регулярных выражений
- Немного теории
- Синтаксис регулярных выражений
- Классы Match и MatchCollection
- Классы Group и GroupCollection
- Пример "чет и нечет"
- Пример "око и рококо"
- Пример "кок и кук"
- Пример "обратные ссылки"
- Пример "Дом Джека"
- Пример "Атрибуты"
- 16. Лекция: Классы
- Синтаксис класса
- Поля класса
- Доступ к полям
- Методы-свойства
- Индексаторы
- Константы
- Конструкторы класса
- Деструкторы класса
- Проектирование класса Rational
- Методы класса Rational
- Закрытый метод нод
- Операции над рациональными числами
- Константы класса Rational
- Развернутые и ссылочные типы
- Классы и структуры
- Класс Rational или структура Rational
- Встроенные структуры
- Еще раз о двух семантиках присваивания
- Перечисления
- Персоны и профессии
- 18. Лекция: Отношения между классами. Клиенты и наследники
- Отношения между классами
- Отношения "является" и "имеет"
- Отношение вложенности
- Расширение определения клиента класса
- Отношения между клиентами и поставщиками
- Сам себе клиент
- Наследование
- Добавление полей потомком
- Конструкторы родителей и потомков
- Добавление методов и изменение методов родителя
- Статический контроль типов и динамическое связывание
- Три механизма, обеспечивающие полиморфизм
- Пример работы с полиморфным семейством классов
- Абстрактные классы
- Классы без потомков
- Преобразование к классу интерфейса
- Наследование от общего предка
- Клонирование и интерфейс iCloneable
- Сериализация объектов
- Класс с атрибутом сериализации
- Интерфейс iSerializable
- 20. Лекция: Функциональный тип в c#. Делегаты
- Как определяется функциональный тип и как появляются его экземпляры
- Функции высших порядков
- Вычисление интеграла
- Построение программных систем методом "раскрутки". Функции обратного вызова
- Наследование и полиморфизм - альтернатива обратному вызову
- Делегаты как свойства
- Операции над делегатами. Класс Delegate
- Пример "Плохая служба"
- 21. Лекция: События
- Классы с событиями
- Класс sender. Как объявляются события?
- Делегаты и события
- Как зажигаются события
- Классы receiver. Как обрабатываются события
- Классы с событиями, допустимые в каркасе .Net Framework
- Пример "Списки с событиями"
- Класс sender
- Классы receiver
- Переопределение значений аргументов события
- Классы с большим числом событий
- Проект "Город и его службы"
- 22. Лекция: Универсальность. Классы с родовыми параметрами
- Наследование и универсальность
- Синтаксис универсального класса
- Класс с универсальными методами
- Два основных механизма объектной технологии
- Стек. От абстрактного, универсального класса к конкретным версиям
- Ограниченная универсальность
- Синтаксис ограничений
- Список с возможностью поиска элементов по ключу
- Как справиться с арифметикой
- Родовое порождение класса. Предложение using
- Универсальные делегаты
- Framework .Net и универсальность
- 23. Лекция: Отладка и обработка исключительных ситуаций
- Корректность и устойчивость программных систем
- Жизненный цикл программной системы
- Искусство отладки
- Отладочная печать и условная компиляция
- Классы Debug и Trace
- Метод Флойда и утверждения Assert
- Выбрасывание исключений. Создание объектов Exception
- If !MyMethod(){// обработка ошибки}
- Параллельная работа обработчиков исключений
- Блок finally
- Класс Exception
- Организация интерфейса
- Форма и элементы управления
- Взаимодействие форм
- Модальные и немодальные формы
- Передача информации между формами
- Шаблон формы для работы с классом
- Наследование форм
- Два наследника формы TwoLists
- Огранизация меню в формах
- Создание меню в режиме проектирования
- Классы меню
- Создание инструментальной панели с командными кнопками
- Методы класса Graphics
- Класс Pen
- Класс Brush
- Событие Paint
- Кисти и краски
- 25. Лекция: Финальный проект
- Абстрактный класс Figure
- Класс Circle
- Список с курсором. Динамические структуры данных
- Классы элементов списка
- Организация интерфейса