Общий взгляд
Массив задает способ организации данных. Массивом называют упорядоченную совокупность элементов одного типа. Каждый элемент массива имеет индексы, определяющие порядок элементов. Число индексов характеризует размерность массива. Каждый индекс изменяется в некотором диапазоне [a,b]. В языке C#, как и во многих других языках, индексы задаются целочисленным типом. В других языках, например, в языке Паскаль, индексы могут принадлежать счетному конечному множеству, на котором определены функции, задающие следующий и предыдущий элемент. Диапазон [a,b] называется граничной парой, a - нижней границей, b - верхней границей индекса. При объявлении массива границы задаются выражениями. Если все границы заданы константными выражениями, то число элементов массива известно в момент его объявления и ему может быть выделена память еще на этапе трансляции. Такие массивы называются статическими. Если же выражения, задающие границы, зависят от переменных, то такие массивы называются динамическими, поскольку память им может быть отведена только динамически в процессе выполнения программы, когда становятся известными значения соответствующих переменных. Массиву, как правило, выделяется непрерывная область памяти.
-
В языке C++ все массивы являются статическими; более того, все массивы являются 0-базируемыми. Это означает, что нижняя граница всех индексов массива фиксирована и равна нулю. Введение такого ограничения имеет свою логику, поскольку здесь широко используется адресная арифметика. Так, несколько странное выражение mas + i , где mas - это имя массива, а i - индексное выражение, имеет вполне определенный смысл для C++ программистов. Имя массива интерпретируется как адрес первого элемента массива, к этому адресу прибавляется число, равное произведению i на размер памяти, необходимой для одного элемента массива. В результате сложения в такой адресной арифметике эффективно вычисляется адрес элемента mas[i].
В языке C# снято существенное ограничение языка C++ на статичность массивов. Массивы в языке C# являются настоящими динамическими массивами. Как следствие этого, напомню, массивы относятся к ссылочным типам, память им отводится динамически в "куче". К сожалению, не снято ограничение 0-базируемости, хотя, на мой взгляд, в таком ограничении уже нет логики из-за отсутствия в C# адресной арифметики. Было бы гораздо удобнее во многих задачах иметь возможность работать с массивами, у которых нижняя граница не равна нулю.
-
В языке C++ "классических" многомерных массивов нет. Здесь введены одномерные массивы и массивы массивов. Последние являются более общей структурой данных и позволяют задать не только многомерный куб, но и изрезанную, ступенчатую структуру. Однако использование массива массивов менее удобно, и, например, классик и автор языка C++ Бьерн Страуструп в своей книге "Основы языка C++" пишет: "Встроенные массивы являются главным источником ошибок - особенно когда они используются для построения многомерных массивов. Для новичков они также являются главным источником смущения и непонимания. По возможности пользуйтесь шаблонами vector, valarray и т.п.".
Шаблоны, определенные в стандартных библиотеках, конечно, стоит использовать, но все-таки странной является рекомендация не пользоваться структурами, встроенными непосредственно в язык. Замечу, что в других языках массивы являются одной из любимых структур данных, используемых программистами.
В языке C#, соблюдая преемственность, сохранены одномерные массивы и массивы массивов. В дополнение к ним в язык добавлены многомерные массивы. Динамические
многомерные массивы языка C# являются весьма мощной, надежной, понятной и удобной структурой данных, которую смело можно рекомендовать к применению не только профессионалам, но и новичкам, программирующим на C#. После этого краткого обзора давайте перейдем к более систематическому изучению деталей работы с массивами в C#.
Объявление массивов
Рассмотрим, как объявляются одномерные массивы, массивы массивов и многомерные массивы.
Объявление одномерных массивов
Напомню общую структуру объявления:
[<атрибуты>] [<модификаторы>] <тип> <объявители>;
Забудем пока об атрибутах и модификаторах. Объявление одномерного массива выглядит следующим образом:
<тип>[] <объявители>;
Заметьте, в отличие от языка C++ квадратные скобки приписаны не к имени переменной, а к типу. Они являются неотъемлемой частью определения класса, так что запись T[] следует понимать как класс одномерный массив с элементами типа T.
Что же касается границ изменения индексов, то эта характеристика к классу не относится, она является характеристикой переменных - экземпляров, каждый из которых является одномерным массивом со своим числом элементов, задаваемых в объявителе переменной.
Как и в случае объявления простых переменных, каждый объявитель может быть именем или именем с инициализацией. В первом случае речь идет об отложенной инициализации. Нужно понимать, что при объявлении с отложенной инициализацией сам массив не формируется, а создается только ссылка на массив, имеющая неопределенное значение Null. Поэтому пока массив не будет реально создан и его элементы инициализированы, использовать его в вычислениях нельзя. Вот пример объявления трех массивов с отложенной инициализацией:
int[] a, b, c;
Чаще всего при объявлении массива используется имя с инициализацией. И опять-таки, как и в случае простых переменных, могут быть два варианта инициализации. В первом случае инициализация является явной и задается константным массивом. Вот пример:
double[] x= {5.5, 6.6, 7.7};
Следуя синтаксу, элементы константного массива следует заключать в фигурные скобки.
Во втором случае создание и инициализация массива выполняется в объектном стиле с вызовом конструктора массива. И это наиболее распространенная практика объявления массивов. Приведу пример:
int[] d= new int[5];
int[] u,v;
u = new int[3];
for(int i=0; i<3; i++) u[i] =i+1;
//v= {1,2,3}; //присваивание константного массива
//недопустимо
v = new int[4];
v=u; //допустимое присваивание
Arrs.PrintAr1("A", A); Arrs.PrintAr1("B", B);
Arrs.PrintAr1("C", C); Arrs.PrintAr1("X", x);
Arrs.PrintAr1("U", u); Arrs.PrintAr1("V", v);
}
На что следует обратить внимание, анализируя этот текст:
-
• В процедуре показаны разные способы объявления массивов. Вначале объявляются одномерные массивы A, B и C, создаваемые конструктором. Значения элементов этих трех массивов имеют один и тот же тип int. То, что они имеют одинаковое число элементов, произошло по воле программиста, а не диктовалось требованиями языка. Заметьте, что после такого объявления с инициализацией конструктором, все элементы имеют значение, в данном случае - ноль, и могут участвовать в вычислениях.
-
• Массив x объявлен с явной инициализацией. Число и значения его элементов определяется константным массивом.
-
• Массивы u и v объявлены с отложенной инициализацией. В последующих операторах массив u инициализируется в объектном стиле - элементы получают его в цикле значения.
-
• Обратите внимание на закомментированный оператор присваивания. В отличие от инициализации, использовать константный массив в правой части оператора присваивания недопустимо. Эта попытка приводит к ошибке, поскольку v - это ссылка, которой можно присвоить ссылку, но нельзя присвоить константный массив. Ссылку присвоить можно. Что происходит в операторе присваивания v = u? Это корректное ссылочное присваивание: хотя u и v имеют разное число элементов, но они являются объектами одного класса. В результате присваивания память, отведенная массиву v, освободится ею займется теперь сборщик мусора. Обе ссылки u и v будут теперь указывать на один и тот же
Итак, если массив объявляется без инициализации, то создается только висячая ссылка со значением void. Если инициализация выполняется конструктором, то в динамической памяти создается сам массив, элементы которого инициализируются константами соответствующего типа (ноль для арифметики, пустая строка для строковых массивов), и ссылка связывается с этим массивом. Если массив инициализируется константным массивом, то в памяти создается константный массив, с которым и связывается ссылка.
Как обычно задаются элементы массива, если они не заданы при инициализации? Они либо вычисляются, либо вводятся пользователем. Давайте рассмотрим первый пример работы с массивами из проекта с именем Arrays, поддерживающего эту лекцию:
public void TestDeclaration()
{
//объявляются три одномерных массива A,B,C
int[] A = new int[5], B= new int[5], C= new int[5];
Arrs.CreateOneDimAr(A);
Arrs.CreateOneDimAr(B);
for(int i = 0; i<5; i++)
C[i] = A[i] + B[i];
//объявление массива с явной инициализацией
int[] x ={5,5,6,6,7,7};
//объявление массивов с отложенной инициализацией
-
массив, так что изменение элемента одного массива немедленно отразится на другом массиве.
-
• Далее определяется двумерный массив w и делается попытка выполнить оператор присваивания v=w. Это ссылочное присваивание некорректно, поскольку объекты w и v - разных классов и для них не выполняется требуемое для присваивания согласование по типу.
-
• Для поддержки работы с массивами создан специальный класс Arrs, статические методы которого выполняют различные операции над массивами. В частности, в примере использованы два метода этого класса, один из которых заполняет массив случайными числами, второй - выводит массив на печать. Вот текст первого из этих методов:
public static void CreateOneDimAr(int[] A)
{
for(int i = 0; i<A.GetLength(0);i++)
A[i] = rnd.Next(1,100);
}//CreateOneDimAr
Здесь rnd - это статическое поле класса Arrs, объявленное следующим образом:
private static Random rnd = new Random();
Процедура печати массива с именем name выглядит так:
public static void PrintAr1(string name,int[] A)
{
Console.WriteLine(name);
for(int i = 0; i<A.GetLength(0);i++)
Console.Write("\t" + name + "[{0}]={1}", i, A[i]);
Console.WriteLine();
}//PrintAr1
На рис. 11.1 показан консольный вывод результатов работы процедуры TestDeclarations.
Рис. 11.1. Результаты объявления и создания массивов
Особое внимание обратите на вывод, связанный с массивами u и v.
- 1. Лекция: Visual Studio .Net, Framework .Net
- Открытость
- Модульность
- Виртуальная машина
- Дизассемблер и ассемблер
- Метаданные
- Сборщик мусора - Garbage Collector - и управление памятью
- Исключительные ситуации
- События
- Общие спецификации и совместимые модули
- 2. Лекция: Язык c# и первые проекты
- Создание c#
- Виды проектов
- Консольный проект
- Windows-проект
- Начало начал - точка "большого взрыва"
- Выполнение проекта по умолчанию после "большого взрыва"
- Проект WindowsHello
- Общий взгляд
- Система типов
- Типы или классы? и типы, и классы
- Семантика присваивания
- Преобразование к типу object
- Примеры преобразований
- Семантика присваивания. Преобразования между ссылочными и значимыми типами
- Операции "упаковать" и "распаковать" (boxing и unboxing).
- 4. Лекция: Преобразования типов
- Где, как и когда выполняются преобразования типов?
- Преобразования ссылочных типов
- Преобразования типов в выражениях
- Преобразования внутри арифметического типа
- Преобразования и класс Convert
- Проверяемые преобразования
- Исключения и охраняемые блоки. Первое знакомство
- Опасные вычисления в охраняемых проверяемых блоках
- Опасные вычисления в охраняемых непроверяемых блоках
- Опасные преобразования и методы класса Convert
- 5. Лекция: Переменные и выражения
- Объявление переменных
- Время жизни и область видимости переменных
- Глобальные переменные уровня модуля. Существуют ли они в c#?
- Int X,y; //координаты точки
- Локальные переменные
- Глобальные переменные уровня процедуры. Существуют ли?
- Константы
- Выражения
- Приоритет и порядок выполнения операций
- Перегрузка операций
- Операции sizeof и typeof
- Как получить подробную информацию о классе?
- Статические поля и методы арифметических классов
- Логические операции
- Условное выражение
- Операция приведения к типу
- Присваивание
- Специальные случаи присваивания
- Определенное присваивание
- Еще раз о семантике присваивания
- Рассмотрим объявления:
- Класс Math и его функции
- Класс Random и его функции
- Блок или составной оператор
- If(выражение_1) оператор_1
- If(выражение1) if(выражение2) if(выражение3) ...
- Оператор switch
- Операторы break и continue
- Циклы While
- Цикл foreach
- Процедуры и функции - функциональные модули
- Процедуры и функции - методы класса
- Процедуры и функции. Отличия
- Описание методов (процедур и функций). Синтаксис
- Список формальных аргументов
- Тело метода
- Вызов метода. Синтаксис
- О соответствии списков формальных и фактических аргументов
- Вызов метода. Семантика
- Поля класса или функции без аргументов?
- Пример: две версии класса Account
- Функции с побочным эффектом
- Методы. Перегрузка
- 10. Лекция: Корректность методов. Рекурсия
- Корректность методов
- Инварианты и варианты цикла
- Рекурсия
- Рекурсивное решение задачи "Ханойские башни"
- Быстрая сортировка Хоара
- 11. Лекция: Массивы языка c#
- Общий взгляд
- Динамические массивы
- Многомерные массивы
- Массивы массивов
- Процедуры и массивы
- Класс Array
- Массивы как коллекции
- Сортировка и поиск. Статические методы класса Array
- Сводка свойств и методов класса Array
- Класс Object и массивы
- Массивы объектов
- Массивы. Семантика присваивания
- Общий взгляд
- Класс char[] - массив символов
- Операции над строками
- Строковые константы
- Неизменяемый класс string
- Статические свойства и методы класса String
- Метод Format
- Методы Join и Split
- Динамические методы класса String
- Операции над строками
- Основные методы
- Емкость буфера
- Пространство имен RegularExpression и классы регулярных выражений
- Немного теории
- Синтаксис регулярных выражений
- Классы Match и MatchCollection
- Классы Group и GroupCollection
- Пример "чет и нечет"
- Пример "око и рококо"
- Пример "кок и кук"
- Пример "обратные ссылки"
- Пример "Дом Джека"
- Пример "Атрибуты"
- 16. Лекция: Классы
- Синтаксис класса
- Поля класса
- Доступ к полям
- Методы-свойства
- Индексаторы
- Константы
- Конструкторы класса
- Деструкторы класса
- Проектирование класса Rational
- Методы класса Rational
- Закрытый метод нод
- Операции над рациональными числами
- Константы класса Rational
- Развернутые и ссылочные типы
- Классы и структуры
- Класс Rational или структура Rational
- Встроенные структуры
- Еще раз о двух семантиках присваивания
- Перечисления
- Персоны и профессии
- 18. Лекция: Отношения между классами. Клиенты и наследники
- Отношения между классами
- Отношения "является" и "имеет"
- Отношение вложенности
- Расширение определения клиента класса
- Отношения между клиентами и поставщиками
- Сам себе клиент
- Наследование
- Добавление полей потомком
- Конструкторы родителей и потомков
- Добавление методов и изменение методов родителя
- Статический контроль типов и динамическое связывание
- Три механизма, обеспечивающие полиморфизм
- Пример работы с полиморфным семейством классов
- Абстрактные классы
- Классы без потомков
- Преобразование к классу интерфейса
- Наследование от общего предка
- Клонирование и интерфейс iCloneable
- Сериализация объектов
- Класс с атрибутом сериализации
- Интерфейс iSerializable
- 20. Лекция: Функциональный тип в c#. Делегаты
- Как определяется функциональный тип и как появляются его экземпляры
- Функции высших порядков
- Вычисление интеграла
- Построение программных систем методом "раскрутки". Функции обратного вызова
- Наследование и полиморфизм - альтернатива обратному вызову
- Делегаты как свойства
- Операции над делегатами. Класс Delegate
- Пример "Плохая служба"
- 21. Лекция: События
- Классы с событиями
- Класс sender. Как объявляются события?
- Делегаты и события
- Как зажигаются события
- Классы receiver. Как обрабатываются события
- Классы с событиями, допустимые в каркасе .Net Framework
- Пример "Списки с событиями"
- Класс sender
- Классы receiver
- Переопределение значений аргументов события
- Классы с большим числом событий
- Проект "Город и его службы"
- 22. Лекция: Универсальность. Классы с родовыми параметрами
- Наследование и универсальность
- Синтаксис универсального класса
- Класс с универсальными методами
- Два основных механизма объектной технологии
- Стек. От абстрактного, универсального класса к конкретным версиям
- Ограниченная универсальность
- Синтаксис ограничений
- Список с возможностью поиска элементов по ключу
- Как справиться с арифметикой
- Родовое порождение класса. Предложение using
- Универсальные делегаты
- Framework .Net и универсальность
- 23. Лекция: Отладка и обработка исключительных ситуаций
- Корректность и устойчивость программных систем
- Жизненный цикл программной системы
- Искусство отладки
- Отладочная печать и условная компиляция
- Классы Debug и Trace
- Метод Флойда и утверждения Assert
- Выбрасывание исключений. Создание объектов Exception
- If !MyMethod(){// обработка ошибки}
- Параллельная работа обработчиков исключений
- Блок finally
- Класс Exception
- Организация интерфейса
- Форма и элементы управления
- Взаимодействие форм
- Модальные и немодальные формы
- Передача информации между формами
- Шаблон формы для работы с классом
- Наследование форм
- Два наследника формы TwoLists
- Огранизация меню в формах
- Создание меню в режиме проектирования
- Классы меню
- Создание инструментальной панели с командными кнопками
- Методы класса Graphics
- Класс Pen
- Класс Brush
- Событие Paint
- Кисти и краски
- 25. Лекция: Финальный проект
- Абстрактный класс Figure
- Класс Circle
- Список с курсором. Динамические структуры данных
- Классы элементов списка
- Организация интерфейса