3.3.2Многослойный персептрон.
Рассмотрим иерархическую сетевую структуру, в которой связанные между собой нейроны (узлы сети) об'единены в несколько слоев (Рис. 6.1). На возможность построения таких архитектур указал еще Ф.Розенблатт, однако им не была решена проблема обучения. Межнейронные синаптические связи сети устроены таким образом, что каждый нейрон на данном уровне иерархии принимает и обрабатывает сигналы от каждого нейрона более низкого уровня. Таким образом, в данной сети имеется выделенное направление распостранения нейроимпульсов - от входного слоя через один (или несколько) скрытых слоев к выходному слою нейронов. Нейросеть такой топологии мы будем называть обобщенным многослойным персептроном или, если это не будет вызывать недоразумений, просто персептроном.
Рис.6.1. Структура многослойного персептрона с пятью входами, тремя нейронами в скрытом слое, и одним нейроном выходного слоя.
Персептрон представляет собой сеть, состоящую из нескольких последовательно соединенных слоев формальных нейронов МакКаллока и Питтса. На низшем уровне иерархии находится входной слой, состоящий из сенсорных элементов, задачей которого является только прием и распространение по сети входной информации. Далее имеются один или, реже, несколько скрытых слоев. Каждый нейрон на скрытом слое имеет несколько входов, соединенных с выходами нейронов предыдущего слоя или непосредственно со входными сенсорами X1..Xn, и один выход. Нейрон характеризуется уникальным вектором весовых коэффициентов w. Веса всех нейронов слоя формируют матрицу, которую мы будем обозначать V или W. Функция нейрона состоит в вычислении взвешенной суммы его входов с дальнейшим нелинейным преобразованием ее в выходной сигнал:
(6.1)
Выходы нейронов последнего, выходного, слоя описывают результат классификации Y=Y(X). Особенности работы персептрона состоят в следующем. Каждый нейрон суммирует поступающие к нему сигналы от нейронов предыдущего уровня иерархии с весами, определяемыми состояниями синапсов, и формирует ответный сигнал (переходит в возбужденное состояние), если полученная сумма выше порогового значения. Персептрон переводит входной образ, определяющий степени возбуждения нейронов самого нижнего уровня иерахии, в выходной образ, определяемый нейронами самого верхнего уровня. Число последних, обычно, сравнительно невелико. Состояние возбуждения нейрона на верхнем уровне говорит о принадлежности входного образа к той или иной категории.
Традиционно рассматривается аналоговая логика, при которой допустимые состояния синаптических связей определяются произвольными действительными числами, а степени активности нейронов - действительными числами между 0 и 1. Иногда исследуются также модели с дискретной арифметикой, в которой синапс характеризуется двумя булевыми переменными: активностью (0 или 1) и полярностью (-1 или +1), что соответствует трехзначной логике. Состояния нейронов могут при этом описываться одной булевой переменной. Данный дискретный подход делает конфигурационное пространство состояний нейронной сети конечным (не говоря уже о преимуществах при аппаратной реализации).
Здесь будет в основном описываться классический вариант многослойной сети с аналоговыми синапсами и сигмоидальной передаточной функцией нейронов, определяемой формулой (6.1).
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы