3.2.1Задача обучения нейронной сети на примерах.
По своей организации и функциональному назначению искусственная нейронная сеть с несколькими входами и выходами выполняет некоторое преобразование входных стимулов - сенсорной информации о внешнем мире - в выходные управляющие сигналы. Число преобразуемых стимулов равно n - числу входов сети, а число выходных сигналов соответствуе числу выходов m. Совокупность всевозможных входных векторов размерности n образует2 векторное пространство X, которое мы будем называть признаковым пространством. Аналогично, выходные вектора также формируют признаковое пространство, которое будет обозначаться Y. Теперь нейронную сеть можно мыслить, как некоторую многомерную функцию F:X®Y, аргумент которой принадлежит признаковому пространству входов, а значение - выходному признаковому пространству.
При произвольном значении синаптических весовых коэффициентов нейронов сети функция, реализуемая сетью также произвольна. Для получения требуемой функции необходим специфический выбор весов. Упорядоченная совокупность всех весовых коэффициентов всех нейронов может быть представлена, как вектор W. Множество всех таких векторов также формирует векторное пространство, называемое пространством состояний или конфигурационным (фазовым3) пространством W. Задание вектора в конфигурационном пространстве полностью определяет все синаптические веса и, тем самым, состояние сети. Состояние, при котором нейронная сеть выполняет требуемую функцию, называют обученным состоянием сети W*. Отметим, что для заданной функции обученное состояние может не существовать или быть не единственным. Задача обучения теперь формально эквивалентна построению процесса перехода в конфигурационном пространстве от некоторого произвольного состояния w0 к обученному состоянию.
Требуемая функция однозначнно описывается путем задания соотвествия каждому вектору признакового пространства X некоторого вектора из пространства Y. В случае сети из одного нейрона в задаче детектирования границы, рассмотренной в конце третьей лекции, полное описание требуемой функции достигается заданием всего четырех пар векторов. Однако в общем случае, как например, при работе с видеоизображением, признаковые пространства могут иметь высокую размерность, поэтому даже в случае булевых векторов однозначное определение функции становится весьма громоздким4. Во многих практических случаях значения требуемых функций для заданных значений аргумента получаются из эксперимента или наблюдений, и, следовательно, известны лишь для ограниченной совокупности векторов. Кроме того, известные значения функции могут содержать погрешности, а отдельные данные могут даже частично противоречить друг другу. По этим причинам перед нейронной сетью обычно ставится задача приближенного представления функции по имеющимся примерам. Имеющиеся в распоряжении исследователя примеры соответствий между векторами, либо специально отобранные из всех примеров наиболее представительные данные называют обучающей выборкой. Обучающая выборка определяется обычно заданием пар векторов, причем в каждой паре один вектор соотвествует стимулу, а второй - требуемой реакции. Обучение нейронной сети состоит в приведении всех векторов стимулов из обучающей выборки требуемым реакциям путем выбора весовых коэффициентов нейронов.
Общая проблема кибернетики, заключающаяся в построении искусственной системы с заданным функциональным поведением, в контексте нейроных сетей понимается, как задача синтеза требуемой искусственной сети. Она может включать в себя следующие подзадачи: 1) выбор существенных для решаемой задачи признаков и формирование признаковых пространств; 2) выбор или разработка архитектуры нейронной сети, адекватной решаемой задаче; 3) получение обучаюшей выборки из наиболее представительных, по мнению эксперта, векторов признаковых пространств; 4) обучение нейронной сети на обучающей выборке.
Отметим, что подзадачи 1)-3) во многом требуют экспертного опыта работы с нейронными сетями, и здесь нет исчерпывающих формальных рекомендаций. Эти вопросы рассматриваются на протяжении всей книги в применении к различным нейросетевым архитектурам, с иллюстрациями особенностей их обучения и применения.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы