logo search
Операционные системы

Инвертированные таблицы страниц.

В этой модели виртуальный адрес трактуется как тройка значений: PID процесса, номер виртуальной страницы и смещение в этой странице. При таком подходе используется единственная таблица страниц для всей системы, и каждая строка данной таблицы соответствует физической страницы (с номером, равным номеру этой строки). При этом каждая запись данной таблицы содержит информацию о том, какому процессу принадлежит данная физическая страница, а также какая виртуальная страница этого процесса размещена в данной физической странице. Итак, имея пару PID процесса и номер виртуальной странице, производится поиск ее в таблице страниц, и по смещению найденного результата определяется номер физической страницы.

К достоинствам данной модели можно отнести наличие единственной таблицы страниц, обновление которой при смене контекстам сравнительно нетрудоемкое: операционная система производит обновление тех строк таблицы, для которых в соответствующие физические страницы происходит загрузка процесса. Отметим, что «тонким местом» данной модели является организация поиска в таблице. Если будет использоваться прямой поиск, то это приведет к существенным накладным расходам. Для оптимизации этого момента возможно надстройка над этим решением более интеллектуальных моделей — например, модели хеширования и/или использования TLB-таблиц.

Революционным достоинством страничной организации памяти стало то, что исполняемый в системе процесс может использовать очень незначительную часть физического ресурса памяти, а все остальные его страницы могут размещаться во внешней памяти (быть откачанными). Очевидно, что и страничная организация памяти имеет свои недостатки: в частности, это проблема фрагментации внутри страницы. В связи с использованием страничной организации памяти встает еще одна проблема — это проблема выбора той страницы, которая должна быть откачана во внешнюю память при необходимости загрузить какую-то страницу из внешней памяти. Эта задача имеет множество решений, некоторые из которых будут освещены ниже.

Первым рассмотрим алгоритм NRU (Not Recently Used — не использовавшийся в последнее время). Этот алгоритм основан на том, что с любой страницей ассоциируются два признака, один из которых отвечает за обращение на чтение или запись к странице (R-признак), а второй — за модификацию страницы (M-признак), когда в страницу что-то записывается. Значение этих признаков устанавливается аппаратно. Имеется также возможность посредством обращения к операционной системе обнулять эти признаки.

Итак, алгоритм NRU действует по следующему принципу. Изначально для всех страниц процесса признаки R и M обнуляются. По таймеру или по возникновению некоторых событий в системе происходит программное обнуление всех R-признаков. Когда системе требуется выбрать какую-то страницу для откачки из оперативной памяти, она поступает следующим образом. Все страницы, принадлежащие данному процессу, делятся на 4 категории в зависимости от значения признаков R и M.

Соответственно, алгоритм предлагает выбирать страницу для откачивания случайным способом из непустого класса с минимальным номером.

Следующий алгоритм, который мы рассмотрим, — это алгоритм FIFO. Если в системе реализован этот алгоритм, то тогда при загрузке очередной страницы в память операционная система фиксирует время этой загрузки. Соответственно, данный алгоритм предполагает откачку той страницы, которая наиболее долго располагается в ОЗУ.

Очевидно, что данная стратегия зачастую оказывается неэффективной, поскольку возможна откачка интенсивно используемой страницы. Поэтому существует целый ряд модификаций алгоритма FIFO, нацеленных на сглаживание обозначенной проблемы.

Модифицированный алгоритм может иметь следующий вид. Выбирается самая «старая» страница, затем система проверяет значение признака доступа к этой странице (R-признак). Если R = 0, то эта страница откачивается. Если же R = 1, то этот признак обнуляется, а также переопределяется время загрузки данной страницы текущим временем (иными словами, данная страница перемещается в конец очереди), после чего алгоритм начинает свою работу с начала.

Данный алгоритм имеет недостатки, связанные с ростом накладных расходов при перемещении страниц по очереди. Поэтому этот алгоритм получил свое развитие, в частности, в виде алгоритма «Часы».

Алгоритм «Часы» подразумевает, что все страницы образуют циклический список (Рис. 130.). Имеется некоторый маркер, ссылающийся на некоторую страницу в списке, и этот маркер может перемещаться, например, только по часовой стрелке.

Функционирование алгоритма достаточно просто: если значение R-признака в обозреваемой маркером странице равно нулю, то эта страница выгружается, а на ее место помещается новая страница, после чего маркер сдвигается. Если же R = 1, то этот признак обнуляется, а маркер сдвигается на следующую позицию.