3.8.7Обучение сети арт.
В начале функционирования все веса B и T нейронов, а также параметр сходства получают начальные значения. Согласно теории АРТ, эти значения должны удовлетворять условию
где m - число компонент входного вектора X, значение L>1 (например L=2). Такой выбор весов будет приводить к устойчивому обучению. Уровень сходства r выбирается на основе требований решаемой задачи. При высоких значениях этого параметра будет сформировано большое число категорий, к каждой из которых будут относиться только очень похожие вектора. При низком уровне r сеть сформирует небольшое число категорий с высокой степенью обобщения.
Процесс обучения22 происходит без учителя, на основе самоорганизации. Обучение производится для весов нейрона-победителя в случае как успешной, так и неуспеншной классификации. При этом веса вектора B стремятся к нормализованной величине компонент вектора C:
При этом роль нормализации компонент крайне важна. Вектора с большим число единиц приводят к небольшим значениям весов b, и наоборот. Таким образом, произведение оказывается масштабированным. Масштабирование приводит к тому, что возможно правильное различение векторов, даже если один является подмножеством другого. Пусть нейрон X1 соответствует образу (100000), а нейрон X2 - образу (111100). Эти образы являются, очевидно, различными. При обучении без нормализации (т.е. bi ® ci ) при поступлении в сеть первого образа, он даст одинаковые скалярные произведения, равные 1, как с весами нейрона X1, так и X2. Нейрон X2, в присутствии небольших шумовых отклонений в значениях весов, может выиграть конкуренцию. При этом веса его вектора T устаноятся равными (100000), и образ (111100) будет безвозвратно "забыт" сетью.
При применении нормализации исходные скалярные произведения будут равны единице для нейрона X1, и значению 2/5 для нейрона X2 (при L=2). Тем самым, нейрон X1 заслуженно и легко выиграет конкурентное соревнование.
Компоненты вектора T, как уже говорилось, при обучении устанавливаются равными соответвующим значениям вектора C. Следует подчеркнуть, что это процесс необратим. Если какая-то из компонент tj оказалась равной нулю, то при дальнейшем обучении на фазах сравнения соотвествующая компонента cj никогда не получит подкрепления от tj=0 по правилу 2/3, и, следовательно, единичное значение tj не может быть восстановлено. Обучение, таким образом, сопровождается занулением все большего числа компонент вектора T, оставшиеся ненулевыми компоненты определяют множество критических черт данной категории. Эта особенность проиллюстрирована на Рис. 11.3.
Рис. 11.3. Обучающие образы C и сформированный вектор критических черт T - минимальный набор общих элементов категории.
Остановимся теперь кратко на основных теоремах теории АРТ, характеризующих обучение и функционирование сети. Некоторые из них нами уже упоминались в тексте.
- Оглавление
- Введение
- 1.Математические модели искусственных нейронных сетей [9]
- 1.1Общие сведения о структуре биологического нейрона
- 1.2 Математическая модель искусственного нейрона
- 1.3 Математическое описание нейронной сети
- 1.4 Стохастический нейрон
- 1.5 Сравнение характеристик машины фон Неймана и нейронной сети
- 2.Разработка структуры и функций нейроимитатора как элемента интеллектуальной информационной системы
- 2.1 Концепции применения нейросетевых компонентов в информационных системах
- 2.2 Предварительная обработка информации на этапе проектирования нейросетевых компонентов
- 2.3 Формирование задачника для нейросети
- 2.4 Особенности формирования нейронной сети
- 2.5 Интерпретация сигналов нейронной сети
- 2.6Управляющая программа (исполнитель)
- 2.7 Компонент учитель
- 2.8Настройка параметров нейросети.
- 2.9Оценка и коррекция нейросетевой модели
- 2.10 Конструктор нейронной сети
- 2.11 Контрастер нейросети.
- 2.12 Логически прозрачные сети, получение явных знаний
- 2.13 Решение дополнительных задач с помощью нейросетевых компонентов
- 2.14Разработка языка описания нейроимитатора для обмена данными
- 3.Разновидности нейронных сетей [31]
- 3.1Персептрон Розенблатта.
- 3.1.1Персептрон Розенблатта.
- 3.1.2Теорема об обучении персептрона.
- 3.1.3Линейная разделимость и персептронная представляемость
- 3.2Свойства процессов обучения в нейронных сетях.
- 3.2.1Задача обучения нейронной сети на примерах.
- 3.2.2Классификация и категоризация.
- 3.2.3Обучение нейронной сети с учителем, как задача многофакторной оптимизации.
- 3.3Многослойный персептрон.
- 3.3.1Необходимость иерархической организации нейросетевых архитектур.
- 3.3.2Многослойный персептрон.
- 3.3.3Обучение методом обратного распространения ошибок.
- 3.4Другие иерархические архитектуры.
- 3.4.1Звезды Гроссберга
- 3.4.2Принцип Winner Take All (wta) - Победитель Забирает Все - в модели Липпмана-Хемминга.
- 3.4.3Карта самоорганизации Кохонена.
- 3.4.4Нейронная сеть встречного распространения.
- 3.5Модель Хопфилда.
- 3.5.1Сети с обратными связями
- 3.5.2Нейродинамика в модели Хопфилда
- 3.5.3Правило обучения Хебба
- 3.5.4Ассоциативность памяти и задача распознавания образов
- 3.6Обобщения и применения модели Хопфилда.
- 3.6.1Модификации правила Хебба.
- 3.6.2Матрица Хебба с ортогонализацией образов.
- 3.6.3Отказ от симметрии синапсов.
- 3.6.4Алгоритмы разобучения (забывания).
- 3.6.5Двунаправленная ассоциативная память.
- 3.6.6Детерминированная и вероятностная нейродинамика.
- 3.6.7Применения сети Хопфилда к задачам комбинаторной оптимизации.
- 3.7Неокогнитрон Фукушимы.
- 3.7.1Когнитрон: самоорганизующаяся многослойная нейросеть.
- 3.7.2Неокогнитрон и инвариантное распознавание образов.
- 3.8Теория адаптивного резонанса.
- 3.8.1Дилемма стабильности-пластичности восприятия.
- 3.8.2Принцип адаптивного резонанса.
- 3.8.3Нейронная сеть aрt-1.
- 3.8.4Начальное состояние сети.
- 3.8.5Фаза сравнения.
- 3.8.6Фаза поиска.
- 3.8.7Обучение сети арт.
- 3.8.8Теоремы арт.
- 3.8.9Дальнейшее развитие арт: архитектуры арт-2 и арт-3.
- 3.8.10Сети арт-2 и арт-3.
- 3.9Черты современных архитектур.
- 3.9.1Черты современных архитектур.
- 3.9.2Сегодняшний день нейронауки.
- 3.9.3Программное и аппаратное обеспечение. Нейро-эвм.
- 4.Литература и учебно-методические материалы