«Математический анализ»
Цель дисциплины развить у студентов логическое мышление, познакомить их с идеями и методами математического анализа, привить им опыт самостоятельной работы в области математического анализа, опыт самостоятельной работы с научной и учебной литературой, опыт решения задач с использованием методов математического анализа.
Задачи дисциплины: изучение основ математического анализа, дифференциального и интегрального исчисления, числовых последовательностей, пределов числовых последовательностей и функций, непрерывности функций, производной и дифференциала функций одной и многих переменных, интегрального исчисления функций, неопределенного и определенного интеграла, степенных рядов и рядов Фурье, несобственных и криволинейных интегралов.
В результате освоения дисциплины студент должен:
Знать основные определения и формулы математического анализа, дифференциального и интегрального исчисления, степенных рядов.
Уметь дифференцировать и интегрировать, формулировать и доказывать теоремы, решать различные задачи из разных разделов математического анализа, умение работать с литературой, использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования
Владеть аппаратом математического анализа и его использования при решении различных задач других дисциплин учебного плана.
Содержание дисциплины:
Введение в математический анализ. Множества. Операции с множествами. Декартово произведение множеств. Отображения множеств. Мощность множества. Множество вещественных чисел.
Функция. Область ее определения. Сложные и обратные функции. График функции. Основные элементарные функции, их свойства и графики. Комплексные числа и действия над ними. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Показательная форма комплексного числа. Формула Эйлера. Корни из комплексных чисел. Числовые последовательности. Предел числовой последовательности. Критерий Коши. Арифметические свойства пределов. Переход к пределу в неравенствах. Существование предела монотонной ограниченной последовательности.
Предел и непрерывность функции действительной переменной. Предел функции в точке и на бесконечности. Бесконечно малые и бесконечно большие функции. Свойства предела функции. Односторонние пределы. Пределы монотонных функций. Замечательные пределы.
Непрерывность функции в точке. Локальные свойства непрерывных функций. Непрерывность сложной и обратной функций. Непрерывность элементарных функций. Односторонняя непрерывность. Точки разрыва, их классификация. Сравнение функций. Символы о и О. Эквивалентные функции. Свойства функций, непрерывных на отрезке: ограниченность, существование наибольшего и наименьшего значений, промежуточные значения. Теорема об обратной функции.
Дифференциальное исчисление функций одной переменной. Понятие функции, дифференцируемой в точке. Дифференциал функции, его геометрический смысл. Общее представление о методах линеаризации.
Производная функции, ее смысл в различных задачах. Правила нахождения производной и дифференциала. Производная сложной и обратной функций. Инвариантность формы дифференциала. Дифференцирование функций, заданных параметрически.
Точки экстремума функции. Теорема Ферма. Теоремы Роля, Лагранжа, Коши, их применение. Правило Лопиталя.
Производные и дифференциалы высших порядков. Формула Тейлора с остаточным членом в форме Пеано и в форме Лагранжа. Разложение основных элементарных функций по формуле Тейлора. Применение формулы Тейлора для приближенных вычислений.
Условия монотонности функции. Экстремум функции, необходимое условие. Достаточные условия. Отыскание наибольшего и наименьшего значений функции, дифференцируемой на отрезке.
Исследование выпуклости функции. Точки перегиба. Асимптоты функций. Понятие об асимптотическом разложении. Общая схема исследования функции и построения ее графика.
Вектор-функция скалярного аргумента. Понятие кривой, гладкая кривая. Касательная к кривой. Кривизна кривой. Радиус кривизны. Главная нормаль. Бинормаль. Кручение кривой.
Интегральное исчисление функций одной переменной. Первообразная. Неопределенный интеграл и его свойства. Табличные интегралы. Замена переменной и интегрирование по частям в неопределенном интеграле.
Многочлены. Теорема Безу. Основная теорема алгебры. Разложение многочлена с действительными коэффициентами на линейные и квадратичные множители. Разложение рациональных дробей. Интегрирование некоторых иррациональных и трансцендентных функций. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, его свойства. Формула Ньютона-Лейбница, ее применение для вычисления определенных интегралов. Геометрические и механические приложения определенного интеграла.
Несобственные интегралы с бесконечными пределами и от неограниченных функций, их основные свойства. Понятие сингулярных интегралов.
Дифференциальное исчисление функций нескольких переменных. Пространство Rn. Множества в Rn: открытые, замкнутые, ограниченные, линейно связные, выпуклые.
Компактность. Функции нескольких переменных. Предел и непрерывность функции. Функции, непрерывные на компактах. Промежуточные значения непрерывных функций на линейно связных множествах.
Частные производные. Полный дифференциал, его связь с частными производными. Инвариантность формы полного дифференциала. Касательная плоскость к поверхности. Геометрический смысл полного дифференциала. Производная по направлению. Градиент.
Частные производные и дифференциалы высших порядков. Формула Тейлора.
Отображения Rn —> Rn. Непрерывные и дифференцируемые отображения.
Функциональные определители. Условие независимости системы функций. Неявные функции. Теоремы существования. Дифференцирование неявных функций. Теорема об обратном отображении.
Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа.
Кратные, криволинейные и поверхностные интегралы. Двойной и тройной интегралы, их свойства. Сведение кратного интеграла к повторному. Понятие n-кратного интеграла. Замена переменных в кратных интегралах. Полярные, цилиндрические и сферические координаты.
Криволинейные интегралы. Их свойства и вычисление. Поверхностные интегралы. Их свойства и вычисление. Геометрические и механические приложения кратных, криволинейных и поверхностных интегралов.
Теория поля. Скалярное и векторное поле. Циркуляция векторного поля вдоль кривой. Работа силового поля. Поток поля через поверхность. Формула Гаусса- Остроградского. Дивергенция векторного поля, ее физический смысл. Формула Стокса. Ротор векторного поля. Оператор Гамильтона.
Потенциальное поле, его свойства. Условие потенциальности. Нахождение потенциала. Соленоидальное поле, его свойства и строение. Поле ротора. Векторный потенциал.
Числовые и функциональны ряды. Числовые ряды. Сходимость и сумма ряда. Необходимое условие сходимости. Действия с рядами. Ряды с неотрицательными членами. Признаки сходимости.
Знакопеременные ряды, ряды с комплексными членами. Абсолютная и условная сходимости. Признак Лейбница. Свойства абсолютно сходящихся рядов.
Функциональные ряды. Область сходимости. Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов: почленное дифференцирование и интегрирование.
Степенные ряды. Теорема Абеля. Круг сходимости. Ряды Тейлора и Маклорена. Разложение функций в степенные ряды. Приложение рядов.
Гармонический анализ. Нормированные пространства, бесконечномерные евклидовы пространства. Сходимость по норме. Ортогональные и ортонормированные системы. Процесс ортогонализации.
Ряды Фурье по ортогональным системам. Минимальное свойство частных сумм рядов Фурье. Неравенство Бесселя. Равенство Парсеваля-Стеклова. Полнота и замкнутость системы. Тригонометрические ряды Фурье. Интегралы, зависящие от параметра. Непрерывность. Дифференцирование и интегрирование по параметру.
Несобственные интегралы, зависящие от параметра.
Интеграл Фурье. Преобразование Фурье. Формула обращения. Свойства преобразования Фурье.
Аннотация учебной программы дисциплины
- Срок освоения ооп бакалавриата 4 года по очной форме обучения. Трудоемкость ооп бакалавриата 240 зачетных единиц.
- 4.1. Учебный план подготовки бакалавра по направлению
- 230100 Информатика и вычислительная техника Профиль 1 Вычислительные машины, комплексы, системы и сети
- 4.2. Аннотация учебных курсов, предметов, дисциплин (модулей), практик.
- «Иностранный язык»
- «История России»
- «Философия»
- «Экономика»
- «Организация и управление предприятиями»
- «История и культура Чувашии»
- «Чувашский язык»
- «Правоведение»
- «Культурология»
- «Инженерная психология»
- «Автоматизация учета и управления в системе 1с»
- «Основы маркетинга программного обеспечения и вычислительной техники»
- «Математический анализ»
- «Алгебра и геометрия»
- «Информатика»
- «Физика»
- «Экология»
- «Теория вероятностей и математическая статистика»
- «Математическая логика и теория алгоритмов»
- «Дискретная математика»
- «Методы вычислений»
- «Абстрактная алгебра»
- «Системы компьютерной математики»
- «Нечеткая логика»
- «Функциональное и логическое программирование»
- «Структуры и алгоритмы компьютерной обработки данных»
- «Экспертные системы»
- «Теория быстрых алгоритмов»
- «Электротехника, электроника и схемотехника»
- «Программирование»
- «Инженерная и компьютерная графика»
- «Защита информации»
- «Эвм и периферийные устройства»
- «Операционные системы»
- «Базы данных»
- «Сети и телекоммуникации»
- «Безопасность жизнедеятельности»
- «Метрология, стандартизация и сертификация»
- «Теория автоматов»
- «Микропроцессорные системы»
- «Системное программное обеспечение»
- «Теория кодирования»
- «Архитектура вычислительных систем и компьютерных сетей»
- «Цифровая обработка сигналов»
- «Системы реального времени»
- «Проектирование информационно-вычислительных систем»
- «Конструкторско-технологическое обеспечение производства эвм»
- «Техническое обслуживание эвм»
- «Теория передачи информации»
- «Программирование на Java»
- «Графические системы»
- «Исследование операций»
- «Визуальное программирование»
- «Основы теории управления»
- «Компьютерное моделирование»
- «Процессоры обработки сигналов»
- «Операционная система Unix»
- «Распределенные базы данных»
- «Параллельное программирование»
- «Физическая культура»