logo
230100

«Алгебра и геометрия»

Целью изучения дисциплины является ознакомление с основными понятиями алгебры и геометрии, освоение методов и способов решения алгебраических и геометрических задач.

Задачи курса изучение основ алгебры и геометрии, необходимых для освоения других математических дисциплин, и развитие практических навыков решения алгебраических и геометрических задач.

В результате изучения дисциплины студент должен:

Знать: основные определения и теоремы указанного курса

Уметь: решать стандартные задачи аналитической геометрии, решать системы линейных уравнений, задачу на собственные векторы и собственные значения, задачу приведения матрицы к жордановой форме, задачу приведения квадратичной формы и уравнения поверхности второго порядка к каноническому виду, работать с группами перестановок, работать в модулярной арифметике, работать с конечными полями

Владеть: навыками решения алгебраических и геометрических задач.

Содержание дисциплины:

Геометрические векторы. Векторы. Линейные операции над векторами. Проекция на ось. Декартовы координаты векторов и точек. Скалярное произведение векторов, его основные свойства, координатное выражение. Векторное и смешанное произведение векторов, их основные свойства и геометрический смысл. Определители второго и третьего порядка. Координатное выражение векторного и смешанного произведений.

Аналитическая геометрия. Прямая на плоскости. Различные формы уравнений прямой на плоскости. Угол между прямыми. Расстояние от точки до прямой. Прямая и плоскость в пространстве. Уравнение плоскости и прямой в пространстве. Угол между плоскостями. Угол между прямыми. Угол между прямой и плоскостью. Кривые второго порядка: эллипс, гипербола, парабола. Поверхности второго порядка.

Системы линейных алгебраических уравнений. Решение системы линейных алгебраических уравнений методом Гаусса. Определители n-го порядка и их свойства. Разложение определителя по строке (столбцу). Решение систем линейных алгебраических уравнений с п неизвестными по правилу Крамера. Матрицы и действия над ними. Обратная матрица. Решение матричных уравнений с помощью обратной матрицы. Ранг матрицы. Теорема о ранге. Вычисление ранга матрицы. Совместность систем линейных алгебраических уравнений. Однородная и неоднородная системы. Теорема Кронекера-Капелли. Фундаментальная система решений.

Линейные пространства и операторы. Линейные пространства. Линейная зависимость и независимость системы векторов. Размерность и базис линейного пространства. Координаты вектора. Преобразование координат при переходе к новому базису. Линейные операторы и действия над ними. Матрица линейного оператора. Связь между матрицами линейного оператора в различных базисах. Собственные значения и собственные векторы линейного оператора. Характеристический многочлен.

Билинейные и квадратичные формы. Матрица квадратичной формы. Приведение квадратичной формы к каноническому виду. Формулировка закона инерции. Критерий Сильвестра положительной определенности квадратичной формы.

Евклидовы пространства и классы операторов.

Евклидовы пространства. Неравенство Коши-Буняковского. Матрица Грамма скалярного произведения, ее свойства. Ортогональный и ортонормированный базис. Процесс ортогонализации. Ортогональное дополнение подпространства в евклидовом пространстве. Сопряженные операторы в евклидовом пространстве и их свойства. Самосопряженные операторы. Построение ортонормированного базиса из собственных векторов самосопряженного оператора. Ортогональные операторы, их свойства. Ортогональные матрицы.

Тензорный анализ. Понятие тензора. Его валентность. Операции над тензорами.

Аннотация учебной программы дисциплины