logo
7-Информационные технологии / Информационные технологии / лекции ИТ

Информационная технология поддержки принятия решений

Системы поддержки принятия решений и соответствующая им информационная технология появились усилиями в основном американских ученых в конце 70-х - начале 80-х гг., чему способствовали широкое распространение персональных компьютеров, стандартных пакетов прикладных программ, а также успехи в создании систем искусственного интеллекта.

Главной особенностью информационной технологии поддержки принятия решений является качественно новый метод организации взаимодействия человека и компьютера. Выработка решения, что является основной целью этой технологии, происходит в результате итерационного процесса , в котором участвуют:

Окончание итерационного процесса происходит по воле человека. В этом случае можно говорить о способности информационной системы совместно с пользователем создавать новую информацию для принятия решений.

Дополнительно к этой особенности информационной технологии поддержки принятия решений можно указать еще ряд ее отличительных характеристик:

Информационная технология поддержки принятия решений может использоваться на любом уровне управления. Кроме того, решения, принимаемые на различных уровнях управления, часто должны координироваться. Поэтому важной функцией и систем, и технологий является координация лиц, принимающих решения, как на разных уровнях управления, так и на одном уровне.

Основные компоненты

Рассмотрим структуру системы поддержки принятия решений (рис. 2.4), а также функции составляющих ее блоков, которые определяют основные технологические операции.

Рис. 2.4 - Основные компоненты информационной технологии поддержки принятия решений

В состав системы поддержки принятия решений входят три главных компонента: база данных, база моделей и программная подсистема, которая состоит из системы управления базой данных (СУБД), системы управления базой моделей (СУБМ) и системы управления интерфейсом между пользователем и компьютером.

База данных играет в информационной технологии поддержки принятия решений важную роль. Данные могут использоваться непосредственно пользователем для расчетов при помощи математических моделей. Рассмотрим источники данных и их особенности.

  1. Часть данных поступает от информационной системы операционного уровня. Чтобы использовать их эффективно, эти данные должны быть предварительно обработаны.

  2. Помимо данных об операциях фирмы для функционирования системы поддержки принятия решений требуются и другие внутренние данные, например данные о движении персонала, инженерные данные и т.п., которые должны быть своевременно собраны, введены и поддержаны.

  3. Важное значение, особенно для поддержки принятия решений на верхних уровнях управления, имеют данные из внешних источников. В числе необходимых внешних данных следует указать данные о конкурентах, национальной и мировой экономике. В отличие от внутренних данных внешние данные обычно приобретаются у специализирующихся на их сборе организаций.

  4. В настоящее время широко исследуется вопрос о включении в базу данных еще одного источника данных - документов, включающих в себя записи, письма, контракты, приказы и т.п. Если содержание этих документов будет записано в памяти и затем обработано по некоторым ключевым характеристикам (поставщикам, потребителям, датам, видам услуг и др.), то система получит новый мощный источник информации.

База моделей. Целью создания моделей являются описание и оптимизация некоторого объекта или процесса. Использование моделей обеспечивает проведение анализа в системах поддержки принятия решений. Модели, базируясь на математической интерпретации проблемы, при помощи определенных алгоритмов способствуют нахождению информации, полезной для принятия правильных решений.

Пример. Модель линейного программирования дает возможность определить наиболее выгодную производственную программу выпуска нескольких видов продукции при заданных ограничениях на ресурсы.

Использование моделей в составе информационных систем началось с применения статистических методов и методов финансового анализа, которые реализовывались командами обычных алгоритмических языков. Позже были созданы специальные языки, позволяющие моделировать ситуации типа "что будет, если?" или "как сделать, чтобы?". Такие языки, созданные специально для построения моделей, дают возможность построения моделей определенного типа, обеспечивающих нахождение решения при гибком изменении переменных.

Существует множество типов моделей и способов их классификации, например, по цели использования, области возможных приложений, способу оценки переменных и т. п.

По цели использования модели подразделяются на оптимизационные, связанные с нахождением точек минимума или максимума некоторых показателей (например, управляющие часто хотят знать, какие их действия ведут к максимизации прибыли или минимизации затрат), и описательные, описывающие поведение некоторой системы и не предназначенные для целей управления (оптимизации).

По способу оценки модели классифицируются на детерминированные, использующие оценку переменных одним числом при конкретных значениях исходных данных, и стохастические, оценивающие переменные несколькими параметрами, так как исходные данные заданы вероятностными характеристиками.

Детерминированные модели более популярны, потому что они менее дорогие, их легче строить и использовать. К тому же часто с их помощью получается вполне достаточная информация для принятия решения.

По области возможных приложений модели разбиваются на специализированные, предназначенные для использования только одной системой, и универсальные - для использования несколькими системами.

Специализированные модели более дорогие, они обычно применяются для описания уникальных систем и обладают большей точностью.

В системах поддержки принятия решения база моделей состоит из стратегических, тактических и оперативных моделей, а также математических моделей в виде совокупности модельных блоков, модулей и процедур: используемых как элементы для их построения (см. рис.6).

Стратегические модели используются на высших уровнях управления для установления целей организации, объемов ресурсов, необходимых для их достижения, а также политики приобретения и использования этих ресурсов. Они могут быть также полезны при выборе вариантов размещения предприятий, прогнозировании политики конкурентов и т.п. Для стратегических моделей характерны значительная широта охвата, множество переменных, представление данных в сжатой агрегированной форме. Часто эти данные базируются на внешних источниках и могут иметь субъективный характер. Горизонт плани­рования в стратегических моделях, как правило, измеряется в годах. Эти модели обычно детерминированные, описательные, специализированные для использования на одной определенной фирме.

Тактические модели применяются управляющими (менеджерами) среднего уровня для распределения и контроля использования имеющихся ресурсов. Среди возможных сфер их использования следует указать: финансовое планирование, планирование требований к работникам, планирование увеличения продаж, построение схем компоновки предприятий. Эти модели применимы обычно лишь к отдельным частям фирмы (например, к системе производства и сбыта) и могут также включать в себя агрегированные показатели. Временной горизонт, охватываемый тактическими моделями, - от одного месяца до двух лет. Здесь также могут потребоваться данные из внешних источников, но основное внимание при реализации данных моделей должно быть уделено внутренним данным фирмы. Обычно тактические модели реализуются как детерминированные, оптимизационные и универсальные.

Оперативные модели используются на низших уровнях управления для поддержки принятия оперативных решений с горизонтом, измеряемым днями и неделями. Возможные применения этих моделей включают в себя ведение дебиторских счетов и кредитных расчетов, календарное производственное планирование, управление запасами и т.д. Оперативные модели обычно используют для расчетов внутрифирменные данные. Они, как правило, детерминированные, оптимизационные и универсальные (т.е. могут быть использованы в различных организациях).

Математические модели состоят из совокупности модельных блоков, модулей и процедур, реализующих математические методы. Сюда могут входить процедуры линейного программирования, статистического анализа временных рядов, регрессионного анализа и т.п. - от простейших процедур до сложных ППП.

Пример.

Программный продукт Forecast Expert, также разработанный фирмой Про-Инвест-Консалтинг, представляет собой универсальную систему прикладного прогнозирования. Forecast Expert предназначен для построения прогноза временного ряда. В качестве прогнозируемых могут выступать параметры как сфер производства и обращения - цены мирового рынка, спрос на изделия, объемы закупок комплектующих и производственных запасов при увеличении объема производства, цены комплектующих, параметры технологических процессов, так и финансового рынка - цены покупки и продажи акций, деловая активность участников рынка, объем предложений свободных средств инвесторами и многое другое.

Применение Forecast Expert позволяет проанализировать имеющиеся данные и построить прогноз с указанием границ доверительного интервала (при заданной вероятности прогноза) на период времени. Модель определяет степень влияния сезонных факторов и учитывает их при построении прогноза.