logo
Шпора ОИ ФИТУ 2010 by Libida, 1ый семестр (Корончик) [3840 вопросов]

2. Функции Уолша

Функции Уолша представляют собой полную систему ортогональных, ортонормированных функций. Обозначение: wal(n, Q), где n- номер функции, при этом: n = 0, 1,... N-1; N = 2i ; i = 1, 2,….

Первые 8 функций Уолша приведены на рис. 2.

1

0 wal(0, Q)

-1

1

0 wal(1, Q)

-1

1

0 wal(2, Q)

-1

1

0 wal(3, Q)

-1

1

0 wal(4, Q)

-1

1 wal(5,Q)

0

-1

1wal(6,Q)

0

-1

1 wal(7,Q)

0

-1

Q

0 0.5 1

Рис. 2. Функции Уолша

Функция Уолша имеет ранг и порядок. Ранг –число единиц в двоичном представлении n. Порядок - максимальный из содержащих единицу номер разряда двоичного представления. Например, функция wal(5,Q) имеет ранг- 2 а порядок –3 (n = 5 101).

Функции Уолша обладают свойством мультипликативности. Это значит, что произведение любых двух функций Уолша также является функцией Уолша: wal(k,Q)wal(l,Q)= wal(p,Q), где p = k l. В связи с возможностью применения к функциям Уолша логических операций, они широко используются в многоканальной связи с разделением по форме (используется также временное, частотное, фазовое и т. д. разделение), а также аппаратуре формирования и преобразования сигналов на базе микропроцессорной техники.

Функции Уолша можно получить как произведение функций Радема-хера, номер которых соответствует коду Грея номера функции Уолша. Соответствия для первых 8 функций Уолша приведены в табл. 1.

Таблица 1

N

Двоичный

код n

Код

Грея

Соотношения

0

000

000

wal(0,Q)=1

1

001

001

wal(1,Q)=rad(1,Q)

2

010

011

wal(2,Q)=rad(1,Q)rad(2,Q)

3

011

010

wal(3,Q)=rad(2,Q)

4

100

110

wal(4,Q)=rad(2,Q)rad(3,Q)

5

101

111

wal(5,Q)=rad(1,Q)rad(2,Q)rad(3,Q)

6

110

101

wal(6,Q)=rad(1,Q)rad(3,Q)

7

111

100

wal(7,Q)=rad(3,Q)

Существуют различные способы упорядочения функций Уолша: по Уолшу (естественное), по Пэли, по Адамару. Нумерация функций Уолша при различных способах упорядочения (n - по Уолшу; p - по Пэли; h - по Адамару) приведена в табл. 2.

При упорядочении по Пэли номер функции определяется, как номер двоичного кода Грея прочитанный, как обычный двоичный код. Такое упорядочение называется диадическим.

При упорядочение по Адамару номер функции определяется, как двоичное представление номера функции Уолша системы Пели, прочитанное в обратном порядке такое упорядочение называется естественным.

Таблица 2

n

0

1

2

3

4

5

6

7

p

0

1

3

2

6

7

5

4

h

0

4

6

2

3

7

5

1

Как видно из таблицы, различные системы используют одни и те же функции Уолша в различной последовательности, которые равнозначны для представления сигналов, но отличаются только свойства разложения (например, функции Уолша - Пэли сходятся быстрее). При этом, каждому виду упорядочений соответствуют определенные формулы.

Код Грея очень важный циклический код. Двоичное

представление числа может быть легко преобразовано в код Грея с помощью

полусумматоров.

Пусть gn-1gn-2…g2g1g0 – кодовое слово в n-разрядном двоичном коде

Грея, соответствующее двоичному числу bn-1bn-2…b2b1b0. Тогда gi может быть

получена как

gi=bi bi+1, 0 i n-2;

gn-1=bn-1,

где ⊕ означает сложение по модулю два, которое определяется как

0 0=0

1 0=1

0 1=1

1 1=0

Пример преобразования двоичного кода числа 101101 в код Грея