16. Граф-схема алгоритма бпф
Граф алгоритма БПФ с прореживанием по времени. Двоично-инверсная перестановка
Рис. 1
Представим в виде графа алгоритм БПФ с прореживанием по времени основанный на разбиении — объединении при (рисунок 1).
Рис 2: Граф алгоритма БПФ с прореживанием по времени при N=8
На первом этапе отсчеты входного сигнала переставляются местами и исходная последовательность делится на «четную» и «нечетную последовательности» (обозначены красными и синими стрелками). Потом «четная» и «нечетная» последовательности в свою очередь делятся на «четную» и «нечетную» последовательности. При N = 2L, такое деление можно делать L – 1 раз. В нашем случае L =3.
Граф алгоритма с прореживанием по частоте
Граф бабочка для алгоритма с прореживанием по частоте представлен на рисунке:
Поворотные коэффициенты в алгоритме с прореживанием по частоте полностью совпадают с поворотными коэффициентами алгоритма БПФ с прореживанием по времени.
Представим в виде графа алгоритм БПФ с прореживанием по времени основанный на разбиении — объединении при N = 8
Рис 3: Граф алгоритма БПФ с прореживанием по частоте для N=8
На первом этапе исходный сигнал делится на 2 половины (красные и синие стрелочки). Далее вычисляются
Тогда если выполнить ДПФ S0(n) , то получим четные отсчеты спектра в соответствии с (9), а если ДПФ S1(n) - то нечетные отсчеты спектра. Таким образом одно ДПФ длительности N =8 заменили двумя ДПФ длительности N/2 = 4. Для вычисления каждой из ДПФ половинной длительности снова применим прореживание по частоте.
В результате получили 4 ДПФ по 2 точки каждое, которые также можно выполнить при помощи графа бабочки. На выходе получим спектральные отсчеты, которые будут переставлены. На первом уровне преобразования получались четные и нечетные отсчеты спектра, на втором уровне четные и нечетные отсчеты делились снова на четные и нечетные. В результате для расстановки спектральных отсчетов на места необходимо применить двоично-инверсную перестановку.
- 2. Картографические изображения, изображения Земной поверхности, многоканальные изображения.
- 3. Бинарные, полутоновые и спектрозональные изображения. Аэрокосмоснимки
- 4. Ортогональная и перспективная проекции геоизображений.
- 5. Растровая и векторная формы геоизображений
- 6. Дистанционное зондирование Земли (дзз)
- 7. Физический принцип получения данных дзз.
- 8. Сканирование картографических материалов.
- 10. Задача фильтрации
- 11. Дискретное преобразование Фурье.
- 12. Матричное представление корреляции и свертки.
- 13. Спектр мощности, амплитудный и фазовый спектры.
- 14. Постановка задачи
- 15. Вывод алгоритма быстрого преобразования Фурье (бпф)
- 16. Граф-схема алгоритма бпф
- 17. Оценка алгоритма бпф
- 18. Определение частотности. Функции Радемахера. Функции Хаара. Функции Уолша. Двоичный код и код Грея.
- Функции Радемахера
- 2. Функции Уолша
- 19. Четырех и восьмисвязная области. Измерение расстояний.
- 20. Трансформация и привязка геоизображений. Бинаризация геоизображений
- 21. Сшивка карт. Нарезка карт. Цветоделение
- 22. Гистограмма изображения и ее выравнивание.
- 23. Фильтрация геоизображений и удаление шума.
- 24. Графические фильтры.
- 25. Сегментация объектов изображения на отдельные классы.
- 26. Сегментация объектов на линии (протяженные объекты) и дискретные объекты.
- 27. Выделение контуров.
- 28. Выделение средних линий объектов изображения.
- 29. Внутреннее ориентирование снимков. Формирование стереоизображения.
- 30. Стереоскопические измерения снимков (изображений).
- 31. Классификация группы объектов.
- 32. Математическая постановка задачи классификации.
- 33. Классы разделяющих функций
- 34. Критерий наименьшего среднеквадратичного отклонения
- 35. Модель персептронов.
- 38. Распознавание движущихся объектов.
- 39. Дешифрирование карт.
- 40. Формирование тематических карт по результатам дешифрирования