logo
ekzamen_gotovye

2. Охарактеризуйте головні групи методів розв'язування задач цілочислового програмування.

Для знаходження оптимальних планів задач цілочислового програмування застосовують такі групи методів:

1) точні методи:

2) наближені методи.

Основою методів відтинання є ідея поступового «звуження» області допустимих розв’язків розглядуваної задачі. Пошук цілочислового оптимуму починається з розв’язування задачі з так званими послабленими обмеженнями, тобто без урахування вимог цілочисловості змінних. Далі введенням у модель спеціальних додаткових обмежень, що враховують цілочисловість змінних, багатогранник допустимих розв’язків послабленої задачі поступово зменшують доти, доки змінні оптимального розв’язку не набудуть цілочислових значень.

До цієї групи належать:

а) методи розв’язування повністю цілочислових задач (дробовий алгоритм Гоморі);

б) методи розв’язування частково цілочислових задач (другий алгоритм Гоморі, або змішаний алгоритм цілочислового програмування).

Комбінаторні методи цілочислової оптимізації базуються на ідеї перебору всіх допустимих цілочислових розв’язків, однак, згідно з їх процедурою здійснюється цілеспрямований перебір лише досить невеликої частини розв’язків.

Найпоширенішим у цій групі методів є метод гілок і меж.

Починаючи з розв’язування послабленої задачі, він передбачає поділ початкової задачі на дві підзадачі через виключення областей, що не мають цілочислових розв’язків, і дослідження кожної окремої частини багатогранника допустимих розв’язків.

Для розв’язування задач із бульовими змінними застосовують комбінаторні методи, причому, оскільки змінні є бульовими, то методи пошуку оптимуму значно спрощуються.

Досить поширеними є також наближені методи розв’язування цілочислових задач лінійного програмування. Оскільки для практичних задач великої розмірності за допомогою точних методів не завжди можна знайти строго оптимальний розв’язок за прийнятний час або для розв’язування задачі використовуються наближено визначені, неточні початкові дані, то часто в реальних задачах досить обмежитися наближеним розв’язком, пошук якого є спрощеним.

3. Дайте економічну інтерпретацію прямої та двоїстої задач лінійного програмування. Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею.

Економічну інтерпретацію кожної з пари таких задач розглянемо на прикладі виробничої задачі .

Пряма задача: max F = c1x1 + c2x2 + … + cnxn (3.1)

За умов: (3.2)

. (3.3)

Необхідно визначити, яку кількість продукції кожного j-го виду необхідно виготовляти в процесі виробництва, щоб максимізувати загальну виручку від реалізації продукції підприємства. Причому відомі: наявні обсяги ресурсів — ; норми витрат і-го виду ресурсу на виробництво одиниці j-го виду продукції —, а також — ціни реалізації одиниці j-ої продукції.

Розглянемо тепер цю саму задачу з іншого погляду. Допустимо, що за певних умов доцільно продавати деяку частину чи всі наявні ресурси. Необхідно визначити ціни ресурсів. Кожному ресурсу поставимо у відповідність його оцінку . Умов­но вважатимемо, що — ціна одиниці і-го ресурсу.

На виготовлення одиниці j-го виду продукції витрачається згід­но з моделлю (3.1)—(3.3) m видів ресурсів у кількості відповідно . Оскільки ціна одиниці і-го виду ресурсу дорівнює , то загальна вартість ресурсів, що витрачаються на виробництво одиниці j-го виду продукції, обчислюється у такий спосіб:

.

Продавати ресурси доцільно лише за умови, що виручка, отримана від продажу ресурсів, перевищує суму, яку можна було б отримати від реалізації продукції, виготовленої з тих самих обсягів ресурсів, тобто:

.

Зрозуміло, що покупці ресурсів прагнуть здійснити операцію якнайдешевше, отже, необхідно визначити мінімальні ціни одиниць кожного виду ресурсів, за яких їх продаж є доцільнішим, ніж виготовлення продукції. Загальну вартість ресурсів можна виразити формулою:

.

Отже, в результаті маємо двоїсту задачу:

(3.4)

за умов: (3.5)

(3.6)

Тобто необхідно визначити, які мінімальні ціни можна встановити для одиниці кожного і-го виду ресурсу , щоб продаж ресурсів був доцільнішим, ніж виробництво продукції.

Зауважимо, що справжній зміст величин — умовні ціни, що виражають рівень «цінності» відповідного ресурсу для даного виробництва. Англійський термін «shadow prices» у літературі перекладають як «оцінка» або «тіньова, неявна ціна». Академік Л. В. Канторович назвав їх об’єктивно обумовленими оцін­ками відповідного ресурсу.

Задача (3.4)—(3.6) є двоїстою або спряженою до задачі (3.1)—(3.3), яку називають прямою (основною, початковою). Поняття двоїстості є взаємним. По суті мова йде про одну і ту ж задачу, але з різних поглядів. Дійсно, не важко переконатися, що двоїста задача до (3.4)—(3.6) збігається з початковою. Тому кожну з них можна вважати прямою, а іншу — двоїстою. Симетричність двох таких задач очевидна. Як у прямій, так і у двоїстій задачі викорис­товують один набір початкових даних: , ; . Крім того, вектор обмежень початкової задачі стає вектором коефіцієнтів цільової функції двоїстої задачі і навпаки, а рядки матриці А (матриці коефіцієнтів при змінних з обмежень прямої задачі) стають стовпцями матриці коефіцієнтів при змінних в обмеженнях двоїстої задачі. Кожному обмеженню початкової задачі відповідає змінна двоїстої і навпаки.

Початкова постановка задачі та математична модель може мати вигляд як (3.1)—(3.3), так і (3.4)—(3.6). Отже, як правило, кажуть про пару спряжених задач лінійного програмування.