Прием и передача данных
Собственно для приема и передачи данных через сокет используются три пары функций.
#include <sys/types.h>
#include <sys/socket.h>
int send(int sockfd, const void *msg, int len, unsigned int flags);
int recv(int sockfd, void *buf, int len, unsigned int flags);
Аргументы функций:
sockfd – дескриптор сокета, через который передаются данные
Для send:
len – длина сообщения
Если сообщение слишком длинное для того протокола, который используется при соединении, оно не передается и вызов возвращает ошибку EMSGSIZE. Если же сокет окажется переполнен, т.е. в его буфере не хватит места, чтобы поместить туда сообщение, выполнение процесса блокируется до появления возможности поместить сообщение.
Для recv:
len – его первоначальная длина буфера.
При использовании сокетов с установлением виртуального соединения границы сообщений не сохраняются, поэтому приложение, принимающее сообщения, может принимать данные совсем не теми же порциями, какими они были посланы. Вся работа по интерпретации сообщений возлагается на приложение.
Последний аргумент обеих функций – flags – может содержать комбинацию специальных опций. Нас будут интересовать две из них:
MSG_OOB - тот флаг сообщает ОС, что процесс хочет осуществить прием/передачу экстренных сообщений
MSG_PEEK - данный флаг может устанавливаться при вызове recv. При этом процесс получает возможность прочитать порцию данных, не удаляя ее из сокета, таким образом, что последующий вызов recv вновь вернет те же самые данные.
Функция send() возвращает количество переданных байт в случае успеха и -1 в случае неудачи. Код ошибки при этом устанавливается в errno.
В случае успеха функция recv() возвращает количество считанных байт, в случае неудачи –1.
Другая пара функций, которые могут использоваться при работе с сокетами с предварительно установленным соединением – это обычные read() и write(), в качестве дескриптора которым передается дескриптор сокета.
В качестве параметра этим функциям передается дескриптор сокета
Пара функций, которая может быть использована как с сокетами с установлением соединения, так и с сокетами без установления соединения:
#include <sys/types.h>
#include <sys/socket.h>
int sendto(int sockfd, const void *msg, int len, unsigned int flags, const struct sockaddr *to, int tolen);
int recvfrom(int sockfd, void *buf, int len, unsigned int flags, struct sockaddr *from, int *fromlen);
Первые 4 аргумента у них такие же, как и у рассмотренных выше. В последних двух в функцию sendto() должны быть переданы указатель на структуру, содержащую адрес получателя, и ее размер, а функция recvfrom() в них возвращает соответственно указатель на структуру с адресом отправителя и ее реальный размер. Перед вызовом recvfrom() параметр fromlen должен быть установлен равным первоначальному размеру структуры from. Здесь, как и в функции accept, если нас не интересует адрес отправителя, в качестве from можно передать NULL.
- Конспект по курсу лекций Операционные системы
- Структура вычислительной системы
- Аппаратный уровень вычислительной системы
- Системы программирования
- Модель организации прерываний с использованием регистра «слово состояние процессора»
- 3.6.1.1 Устройство последовательного доступа
- Организация управления внешними устройствами
- Иерархия памяти
- Аппаратная поддержка ос и систем программирования
- Некоторые проблемы
- 1. Вложенные обращения к подпрограммам
- 2. Накладные расходы при смене обрабатываемой программы:
- 4. Фрагментация памяти
- 4.2.1 Регистровые окна ( register window )
- Системный стек
- Виртуальная память.
- Базирование адресов.
- Страничная память.
- Многомашинные, многопроцессорные ассоциации.
- Терминальные комплексы
- Компьютерные сети.
- Семейство протоколов tcp/ip
- Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- Транспортный уровень
- Уровень прикладных программ
- Сетевые, распределенные ос
- Операционные системы Основные понятия
- Структура ос.
- Модельная ос
- Жизненный цикл процесса
- Типы операционных систем
- Системы разделения времени
- Управление внешними устройствами. Архитектура.
- Программное управление внешними устройствами
- Буферизация обмена
- Планирование дисковых обменов
- Raid системы.
- Файлы устройств, драйверы
- Управление оперативной памятью
- Двухуровневая организация
- Структурная организация файлов
- Атрибуты файла
- Типовые программные интерфейсы работы с файлами
- Подходы в практической реализации файловой системы Структура «системного» диска
- Модели реализации файлов Непрерывные файлы
- Файлы, имеющие организацию связанного списка.
- Индексные узлы (дескрипторы)
- Модели организации каталогов
- Варианты соответствия: имя файла – содержимое файла
- Координация использования пространства внешней памяти
- Учет свободных блоков файловой системы Связный список свободных блоков
- Использование битового массива
- Организация фс Unix
- Логическая структура каталогов
- Внутренняя организация фс Модель версии System V Структура фс
- Работа с массивами номеров свободных блоков
- Работа с массивом свободных ид
- Индексные дескрипторы
- Адресация блоков файла
- Файл каталог
- Установление связей
- Недостатки фс модели версии System V
- Модель версии ffs bsd
- Стратегии размещения
- Внутренняя организация блоков
- Структура каталога ffs
- Понятие «процесс».
- Процессы в ос Unix Системно-ориентированное определение процесса
- Базовые средства организации и управления процессами
- Семейство системных вызовов exec()
- Использование схемы fork-exec
- Формирование процессов 0 и 1
- . Планирование Основные задачи планирования
- Планирование очереди процессов на начало обработки
- Кванты постоянной длины.
- Кванты переменной длины
- Класс подходов, использующих линейно возрастающий приоритет.
- Разновидности круговорота.
- Смешанные алгоритмы планирования
- Планирование в системах реального времени
- Общие критерии для сравнения алгоритмов планирования
- Планирование в ос unix
- Планирование в Windows nt.
- Планирование свопинга в ос Unix
- Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- Проблемы организации взаимного исключения
- Тупики (deadlocks)
- Способы реализации взаимного исключения
- Семафоры Дейкстры
- Мониторы
- Обмен сообщениями
- Классические задачи синхронизации процессов
- Задача «читателей и писателей»
- Задача о «спящем парикмахере»
- Реализация взаимодействия процессов
- Сигналы
- Системный вызов kill()
- Системный вызов signal()
- Пример 1.
- Пример 2.
- 5 Пример. Программа “Будильник”.
- Пример. Двухпроцессный вариант программы “Будильник”.
- Пример. Использование канала.
- Пример. Схема взаимодействия процессов с использованием канала.
- Пример. Реализация конвейера.
- Пример. Совместное использование сигналов и каналов – «пинг-понг».
- Именованные каналы. Особенность именованных каналов в ос Unix.
- Пример. «Клиент-сервер».
- Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- Системный вызов ptrace()
- Общая схема трассировки процессов
- Пример. Использование трассировки.
- Система межпроцессного взаимодействия ipc.
- Очередь сообщений
- Системный вызов msgget()
- Функция msgsnd()
- Функция msgrcv()
- Функция msgctl()
- Пример. Использование очереди сообщений.
- Пример. Очередь сообщений. Модель «клиент-сервер».
- Разделяемая память.
- Пример. Работа с общей памятью в рамках одного процесса.
- Семафоры
- Пример. Использование разделяемой памяти и семафоров.
- 1Й процесс:
- 2Й процесс:
- Механизм сокетов
- Типы сокетов.
- Функция создания сокета
- Запрос на соединение
- Прослушивание сокета
- Подтверждение соединения
- Прием и передача данных
- Закрытие сокета
- Пример. Работа с локальными сокетами
- Пример работы с сокетами в рамках сети.