2Й процесс:
/* необходимо корректно определить существование ресурса, если он есть - подключиться */
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <string.h>
#define NMAX 256
int main(int argc, char **argv)
{
key_t key;
int semid, shmid;
struct sembuf sops;
char *shmaddr;
char str[NMAX];
key = ftok(“/usr/ter/exmpl”,’S’);
/* создаем тот же самый ключ */
semid = semget(key, 1, 0666 | IPC_CREAT);
shmid = shmget(key, NMAX, 0666 | IPC_CREAT);
/* аналогично предыдущему процессу - инициализации ресурсов */
shmaddr = shmat(shmid, NULL, 0);
sops.sem_num = 0;
sops.sem_flg = 0;
/* запускаем цикл */
do {
printf(“Waiting… \n”); /* ожидание на семафоре */
sops.sem_op = -2;
/* будем ожидать, пока “значение семафора” + ”значение sem_op” не станет положительным, т.е. пока значение семафора не станет как минимум 3 (3-2=1 > 0) */
semop(semid, &sops, 1);
/* теперь значение семафора равно 1 */
strcpy(str, shmaddr); /* копируем строку из разд.памяти */
/*критическая секция - работа с разделяемой памятью - в этот момент первый процесс к разделяемой памяти доступа не имеет*/
if (str[0] == ‘Q’)
{
/*завершение работы - освобождаем разделяемую память */
shmdt(shmaddr);
}
/*после работы – обнулим семафор*/
sops.sem_op=-1;
semop(semid, &sops, 1);
printf(“Read from shared memory: %s\n”, str);
} while (str[0] != ‘Q’);
return 0;
}
Данный пример демонстрирует два разных приема использования семафоров для синхронизации: первый процесс блокируется в ожидании обнуления семафора, т.е. для того, чтобы он мог войти в критическую секцию, значение семафора должно стать нулевым; второй процесс блокируется при попытке уменьшить значение семафора до отрицательной величины, для того, чтобы этот процесс мог войти в критическую секцию, значение семафора должно быть не менее 3. В данном примере, помимо взаимного исключения процессов, достигается строгая последовательность действий двух процессов: они получают доступ к критической секции строго по очереди.
- Конспект по курсу лекций Операционные системы
- Структура вычислительной системы
- Аппаратный уровень вычислительной системы
- Системы программирования
- Модель организации прерываний с использованием регистра «слово состояние процессора»
- 3.6.1.1 Устройство последовательного доступа
- Организация управления внешними устройствами
- Иерархия памяти
- Аппаратная поддержка ос и систем программирования
- Некоторые проблемы
- 1. Вложенные обращения к подпрограммам
- 2. Накладные расходы при смене обрабатываемой программы:
- 4. Фрагментация памяти
- 4.2.1 Регистровые окна ( register window )
- Системный стек
- Виртуальная память.
- Базирование адресов.
- Страничная память.
- Многомашинные, многопроцессорные ассоциации.
- Терминальные комплексы
- Компьютерные сети.
- Семейство протоколов tcp/ip
- Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- Транспортный уровень
- Уровень прикладных программ
- Сетевые, распределенные ос
- Операционные системы Основные понятия
- Структура ос.
- Модельная ос
- Жизненный цикл процесса
- Типы операционных систем
- Системы разделения времени
- Управление внешними устройствами. Архитектура.
- Программное управление внешними устройствами
- Буферизация обмена
- Планирование дисковых обменов
- Raid системы.
- Файлы устройств, драйверы
- Управление оперативной памятью
- Двухуровневая организация
- Структурная организация файлов
- Атрибуты файла
- Типовые программные интерфейсы работы с файлами
- Подходы в практической реализации файловой системы Структура «системного» диска
- Модели реализации файлов Непрерывные файлы
- Файлы, имеющие организацию связанного списка.
- Индексные узлы (дескрипторы)
- Модели организации каталогов
- Варианты соответствия: имя файла – содержимое файла
- Координация использования пространства внешней памяти
- Учет свободных блоков файловой системы Связный список свободных блоков
- Использование битового массива
- Организация фс Unix
- Логическая структура каталогов
- Внутренняя организация фс Модель версии System V Структура фс
- Работа с массивами номеров свободных блоков
- Работа с массивом свободных ид
- Индексные дескрипторы
- Адресация блоков файла
- Файл каталог
- Установление связей
- Недостатки фс модели версии System V
- Модель версии ffs bsd
- Стратегии размещения
- Внутренняя организация блоков
- Структура каталога ffs
- Понятие «процесс».
- Процессы в ос Unix Системно-ориентированное определение процесса
- Базовые средства организации и управления процессами
- Семейство системных вызовов exec()
- Использование схемы fork-exec
- Формирование процессов 0 и 1
- . Планирование Основные задачи планирования
- Планирование очереди процессов на начало обработки
- Кванты постоянной длины.
- Кванты переменной длины
- Класс подходов, использующих линейно возрастающий приоритет.
- Разновидности круговорота.
- Смешанные алгоритмы планирования
- Планирование в системах реального времени
- Общие критерии для сравнения алгоритмов планирования
- Планирование в ос unix
- Планирование в Windows nt.
- Планирование свопинга в ос Unix
- Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- Проблемы организации взаимного исключения
- Тупики (deadlocks)
- Способы реализации взаимного исключения
- Семафоры Дейкстры
- Мониторы
- Обмен сообщениями
- Классические задачи синхронизации процессов
- Задача «читателей и писателей»
- Задача о «спящем парикмахере»
- Реализация взаимодействия процессов
- Сигналы
- Системный вызов kill()
- Системный вызов signal()
- Пример 1.
- Пример 2.
- 5 Пример. Программа “Будильник”.
- Пример. Двухпроцессный вариант программы “Будильник”.
- Пример. Использование канала.
- Пример. Схема взаимодействия процессов с использованием канала.
- Пример. Реализация конвейера.
- Пример. Совместное использование сигналов и каналов – «пинг-понг».
- Именованные каналы. Особенность именованных каналов в ос Unix.
- Пример. «Клиент-сервер».
- Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- Системный вызов ptrace()
- Общая схема трассировки процессов
- Пример. Использование трассировки.
- Система межпроцессного взаимодействия ipc.
- Очередь сообщений
- Системный вызов msgget()
- Функция msgsnd()
- Функция msgrcv()
- Функция msgctl()
- Пример. Использование очереди сообщений.
- Пример. Очередь сообщений. Модель «клиент-сервер».
- Разделяемая память.
- Пример. Работа с общей памятью в рамках одного процесса.
- Семафоры
- Пример. Использование разделяемой памяти и семафоров.
- 1Й процесс:
- 2Й процесс:
- Механизм сокетов
- Типы сокетов.
- Функция создания сокета
- Запрос на соединение
- Прослушивание сокета
- Подтверждение соединения
- Прием и передача данных
- Закрытие сокета
- Пример. Работа с локальными сокетами
- Пример работы с сокетами в рамках сети.