Пример. Двухпроцессный вариант программы “Будильник”.
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
void alr(int s)
{
printf(“\n Быстрее!!! \n”);
signal(SIGALRM, alr);
/* переустановка обработчика alr на приход сигнала SIGALRM */
}
int main(int argc, char **argv)
{
char s[80];
int pid;
signal(SIGALRM, alr);
/* установка обработчика alr на приход сигнала SIGALRM */
if (pid = fork()) {
for (;;)
{
sleep(5); /*приостанавливаем процесс на 5 секунд */
kill(pid, SIGALRM);
/*отправляем сигнал SIGALRM процессу- сыну */
}
}
else {
printf(“Введите имя \n”);
for (;;)
{
printf(“имя:”);
if (gets(s) != NULL) break; /*ожидаем ввода имени*/
}
printf(“OK!\n”);
kill(getppid(), SIGKILL);
/* убиваем зациклившегося отца */
}
return 0;
}
В данном случае программа реализуется в двух процессах. Как и в предыдущем примере, имеется функция реакции на сигнал alr(), которая выводит на экран сообщение и переустанавливает функцию реакции на сигнал, опять же на себя. В основной программе мы также указываем alr() как реакцию на SIGALRM. После этого мы запускаем сыновний процесс, и отцовский процесс (бесконечный цикл) “засыпает” на 5 единиц времени, после чего сыновнему процессу будет отправлен сигнал SIGALRM. Все, что ниже цикла, будет выполняться в процессе-сыне: мы ожидаем ввода строки, если ввод осуществлен, то происходит уничтожение отца (SIGKILL).
Неименованные каналы.
Одним из простейших средств взаимодействия процессов в операционной системе UNIX является механизм каналов. Неименованный канал- область на диске, к которой не возможен доступ по имени, а только с помощью двух дискрипторов с ней ассоциированных. Один для чтения, другой – для записи.
Отличитльные свойства:
В отличии от файла, который тоже является областью на диске и доступ к нему может быть также осуществлен по дескриптору, канал не имеет имени, т.е. доступ к нему возможен только по этим двум дескрипторам, т.е. его невозможно, как правило, открыть, используя какое-то имя. Его можно только создать, и в ответ будет получено два дескриптора, и ими уже можно пользоваться.
Канал обладает фиксированным размером, т.е. возможна ситуация переполнения, чего невозможно в файлах.
Канал не существует вне процессора, его породившего. Он является ресурсом, который создал тот или иной процесс, и если породивший его процесс завершается, то и канал уничтожается. Т.е. точно так же, как все открытые файлы закрываются и прочие ресурсы освобождаются при завершении процесса, так один из этих ресурсов это и канал, который в этом случае тоже освобождается. И соответственно если файл при этом сохраняется на диске, то содержимое канала исчезает бесследно.
Главное отличие от файла – это то, что в нем реализуется строго последовательный доступ к данным. Это означает, что данные могут быть получены только в том порядке, в котором они были в канал положены. Если в файле был возможен произвольный доступ к данным, то в канале это невозможно.
Одним из простейших средств взаимодействия процессов в операционной системе UNIX является механизм каналов. Неименованный канал есть некая сущность, в которую можно помещать и извлекать данные, для чего служат два файловых дескриптора, ассоциированных с каналом: один для записи в канал, другой — для чтения. Для создания канала служит системный вызов pipe():
int pipe (int *fd)
Данный системный вызов выделяет в оперативной памяти некоторое ограниченное пространство и возвращает че6рез параметр fd массив из двух файловых дескрипторов: один для записи в канал — fd[1], другой для чтения — fd[0].
Эти дескрипторы являются дескрипторами открытых файлов, с которыми можно работать, используя такие системные вызовы как read(), write(), dup() и пр.
Однако существуют различия в организации использования обычного файла и канала.
Особенности организации чтения данных из канала:
если прочитано меньше байтов, чем находится в канале, оставшиеся сохраняются в канале;
если делается попытка прочитать больше данных, чем имеется в канале, и при этом существуют открытые дескрипторы записи, ассоциированные с каналом, будет прочитано (т.е. изъято из канала) доступное количество данных, после чего читающий процесс блокируется до тех пор, пока в канале не появится достаточное количество данных для завершения операции чтения;
процесс может избежать такого блокирования, изменив для канала режим блокировки с использованием системного вызова fcntl(), в этом случае будет считано доступное количество данных, и управление будет сразу возвращено процессу;
при закрытии записывающей стороны канала, в него помещается символ EOF (т.е. ситуация когда закрыты все дескрипторы, ассоциированные с записью в канал), после этого процесс, осуществляющий чтение, может выбрать из канала все оставшиеся данные и признак конца файла, благодаря которому блокирования при чтении в этом случае не происходит.
Особенности организации записи данных в канал:
если процесс пытается записать большее число байтов, чем помещается в канал (но не превышающее предельный размер канала) записывается возможное количество данных, после чего процесс, осуществляющий запись, блокируется до тех пор, пока в канале не появится достаточное количество места для завершения операции записи;
процесс может избежать такого блокирования, изменив для канала режим блокировки с использованием системного вызова fcntl(). В неблокирующем режиме в ситуации, описанной выше, будет записано возможное количество данных, и управление будет сразу возвращено процессу.
если же процесс пытается записать в канал порцию данных, превышающую предельный размер канала, то будет записано доступное количество данных, после чего процесс заблокируется до появления в канале свободного места любого размера (пусть даже и всего 1 байт), затем процесс разблокируется, вновь производит запись на доступное место в канале, и если данные для записи еще не исчерпаны, вновь блокируется до появления свободного места и т.д., пока не будут записаны все данные, после чего происходит возврат из вызова write()
если процесс пытается осуществить запись в канал, с которым не ассоциирован ни один дескриптор чтения, то он получает сигнал SIGPIPE (тем самым ОС уведомляет его о недопустимости такой операции).
В стандартной ситуации (при отсутствии переполнения) система гарантирует атомарность операции записи, т. е. при одновременной записи нескольких процессов в канал их данные не перемешиваются.
- Конспект по курсу лекций Операционные системы
- Структура вычислительной системы
- Аппаратный уровень вычислительной системы
- Системы программирования
- Модель организации прерываний с использованием регистра «слово состояние процессора»
- 3.6.1.1 Устройство последовательного доступа
- Организация управления внешними устройствами
- Иерархия памяти
- Аппаратная поддержка ос и систем программирования
- Некоторые проблемы
- 1. Вложенные обращения к подпрограммам
- 2. Накладные расходы при смене обрабатываемой программы:
- 4. Фрагментация памяти
- 4.2.1 Регистровые окна ( register window )
- Системный стек
- Виртуальная память.
- Базирование адресов.
- Страничная память.
- Многомашинные, многопроцессорные ассоциации.
- Терминальные комплексы
- Компьютерные сети.
- Семейство протоколов tcp/ip
- Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- Транспортный уровень
- Уровень прикладных программ
- Сетевые, распределенные ос
- Операционные системы Основные понятия
- Структура ос.
- Модельная ос
- Жизненный цикл процесса
- Типы операционных систем
- Системы разделения времени
- Управление внешними устройствами. Архитектура.
- Программное управление внешними устройствами
- Буферизация обмена
- Планирование дисковых обменов
- Raid системы.
- Файлы устройств, драйверы
- Управление оперативной памятью
- Двухуровневая организация
- Структурная организация файлов
- Атрибуты файла
- Типовые программные интерфейсы работы с файлами
- Подходы в практической реализации файловой системы Структура «системного» диска
- Модели реализации файлов Непрерывные файлы
- Файлы, имеющие организацию связанного списка.
- Индексные узлы (дескрипторы)
- Модели организации каталогов
- Варианты соответствия: имя файла – содержимое файла
- Координация использования пространства внешней памяти
- Учет свободных блоков файловой системы Связный список свободных блоков
- Использование битового массива
- Организация фс Unix
- Логическая структура каталогов
- Внутренняя организация фс Модель версии System V Структура фс
- Работа с массивами номеров свободных блоков
- Работа с массивом свободных ид
- Индексные дескрипторы
- Адресация блоков файла
- Файл каталог
- Установление связей
- Недостатки фс модели версии System V
- Модель версии ffs bsd
- Стратегии размещения
- Внутренняя организация блоков
- Структура каталога ffs
- Понятие «процесс».
- Процессы в ос Unix Системно-ориентированное определение процесса
- Базовые средства организации и управления процессами
- Семейство системных вызовов exec()
- Использование схемы fork-exec
- Формирование процессов 0 и 1
- . Планирование Основные задачи планирования
- Планирование очереди процессов на начало обработки
- Кванты постоянной длины.
- Кванты переменной длины
- Класс подходов, использующих линейно возрастающий приоритет.
- Разновидности круговорота.
- Смешанные алгоритмы планирования
- Планирование в системах реального времени
- Общие критерии для сравнения алгоритмов планирования
- Планирование в ос unix
- Планирование в Windows nt.
- Планирование свопинга в ос Unix
- Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- Проблемы организации взаимного исключения
- Тупики (deadlocks)
- Способы реализации взаимного исключения
- Семафоры Дейкстры
- Мониторы
- Обмен сообщениями
- Классические задачи синхронизации процессов
- Задача «читателей и писателей»
- Задача о «спящем парикмахере»
- Реализация взаимодействия процессов
- Сигналы
- Системный вызов kill()
- Системный вызов signal()
- Пример 1.
- Пример 2.
- 5 Пример. Программа “Будильник”.
- Пример. Двухпроцессный вариант программы “Будильник”.
- Пример. Использование канала.
- Пример. Схема взаимодействия процессов с использованием канала.
- Пример. Реализация конвейера.
- Пример. Совместное использование сигналов и каналов – «пинг-понг».
- Именованные каналы. Особенность именованных каналов в ос Unix.
- Пример. «Клиент-сервер».
- Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- Системный вызов ptrace()
- Общая схема трассировки процессов
- Пример. Использование трассировки.
- Система межпроцессного взаимодействия ipc.
- Очередь сообщений
- Системный вызов msgget()
- Функция msgsnd()
- Функция msgrcv()
- Функция msgctl()
- Пример. Использование очереди сообщений.
- Пример. Очередь сообщений. Модель «клиент-сервер».
- Разделяемая память.
- Пример. Работа с общей памятью в рамках одного процесса.
- Семафоры
- Пример. Использование разделяемой памяти и семафоров.
- 1Й процесс:
- 2Й процесс:
- Механизм сокетов
- Типы сокетов.
- Функция создания сокета
- Запрос на соединение
- Прослушивание сокета
- Подтверждение соединения
- Прием и передача данных
- Закрытие сокета
- Пример. Работа с локальными сокетами
- Пример работы с сокетами в рамках сети.