Модели hsv и hsl
Рассмотренные модели ориентированы на работу с цветопередающей аппаратурой и для некоторых людей неудобны. Поэтому модели HSV, HLS опираются на понятия тона, насыщенности и яркости (светлоты).
В цветовом пространстве модели HSV (Hue, Saturation, Value), иногда называемой HSB (Hue, Saturation, Brightness), используется цилиндрическая система координат, а множество допустимых цветов представляет собой шестигранный конус, поставленный на вершину.
Основание конуса представляет яркие цвета и соответствует V = 1. Тон (H) измеряется углом, отсчитываемым вокруг вертикальной оси OV. При этом красному цвету соответствует угол 0, зелёному – угол 120 и т. д. Цвета, взаимно дополняющие друг друга до белого, находятся напротив один другого, т. е. их тона отличаются на 180. Величина S (насыщенность) изменяется от 0 на оси OV до 1 на гранях конуса.
Конус имеет единичную высоту (V = 1) и основание, расположенное в начале координат. В основании конуса величины H и S смысла не имеют. Белому цвету соответствует пара S = 1, V = 1. Ось OV (S = 0) соответствует ахроматическим цветам (серым тонам).
Процесс добавления белого цвета к заданному можно представить как уменьшение насыщенности S, а процесс добавления чёрного цвета – как уменьшение яркости V. Основанию шестигранного конуса соответствует проекция RGB куба вдоль его главной диагонали.
Рис. 2.15. Цветовое пространство HSV модели
Еще одним примером системы, построенной на интуитивных понятиях тона насыщенности и светлоты, является система HLS (Hue, Lightness, Saturation). Здесь множество всех цветов представляет собой два шестигранных конуса, поставленных друг на друга (основание к основанию).
Алгоритмы преобразования RGB в HSV и в HLS и обратные преобразования рассмотрены в [7].
-
Содержание
- «Национальный исследовательский томский политехнический университет»
- Введение
- Способы представления изображений в эвм
- Растровое представление изображений
- Параметры растровых изображений
- Векторное представление изображений
- Представление изображений с помощью фракталов
- Геометрические фракталы
- Алгебраические фракталы
- Системы итерируемых функций
- Представление цвета в компьютере
- Свет и цвет
- Цветовые модели и пространства
- Цветовая модель rgb
- Субтрактивные цветовые модели
- Модели hsv и hsl
- Системы управления цветом
- Графические файловые форматы
- Растровые алгоритмы
- Алгоритмы растеризации
- Растровое представление отрезка. Алгоритм Брезенхейма
- Растровая развёртка окружности
- Кривые Безье
- Закраска области, заданной цветом границы
- Заполнение многоугольника
- Методы устранения ступенчатости
- Метод увеличения частоты выборки
- Метод, основанный на использовании полутонов
- Методы обработки изображений
- Яркость и контраст
- Масштабирование изображения
- Преобразование поворота
- Цифровые фильтры изображений
- Линейные фильтры
- Сглаживающие фильтры
- Контрастоповышающие фильтры
- Разностные фильтры
- Нелинейные фильтры
- Преобразования растровых изображений
- Векторизация с помощью волнового алгоритма
- Построение скелета изображения
- Оптимизация скелета изображения
- Сегментация изображений
- Методы, основанные на кластеризации
- Алгоритм разрастания регионов
- Компьютерная геометрия
- Двумерные преобразования
- Однородные координаты
- Двумерное вращение вокруг произвольной оси
- Трехмерные преобразования
- 2. Трехмерное изменение масштаба
- 3. Трехмерный сдвиг
- 4. Трехмерное вращение
- Проекции
- Математическое описание плоских геометрических проекций
- Изображение трехмерных объектов
- Видимый объем
- Преобразование видимого объема
- Представление пространственных форм
- Полигональные сетки
- Явное задание многоугольников
- Задание многоугольников с помощью указателей в список вершин
- Явное задание ребер
- Удаление невидимых линий и поверхностей
- Классификация методов удаления невидимых линий и поверхностей
- Алгоритм плавающего горизонта
- Алгоритм Робертса
- Определение нелицевых граней
- Удаление невидимых ребер
- Алгоритм, использующий z–буфер
- Методы трассировки лучей
- Алгоритмы, использующие список приоритетов
- Алгоритм Ньюэла-Ньюэла-Санча для случая многоугольников
- Алгоритм Варнока (Warnock)
- Алгоритм Вейлера-Азертона (Weiler-Atherton)
- Методы закраски
- Диффузное отражение и рассеянный свет
- Зеркальное отражение
- Однотонная закраска полигональной сетки
- Метод Гуро
- Метод Фонга
- Поверхности, пропускающие свет
- Детализация поверхностей
- Детализация цветом
- Детализация фактурой
- Библиотека OpenGl
- Особенности использования OpenGl в Windows
- Основные типы данных
- Рисование геометрических объектов
- Работа с буферами и задание цвета объектов
- Задание графических примитивов
- Рисование точек, линий и многоугольников
- Преобразование объектов в пространстве
- Преобразования в пространстве
- Получение проекций
- Задание моделей закрашивания
- Освещение
- Полупрозрачность. Использование α-канала
- Наложение текстуры
- Аппаратные средства машинной графики
- Устройства ввода
- Сканеры
- Основные характеристики
- Фирмы-производители
- Дигитайзеры
- Принцип действия
- Основные характеристики
- Фирмы-производители
- Цифровые фотокамеры
- Принцип действия
- Фирмы-производители
- Литература
- Оглавление
- Отпечатано в Издательстве тпу в полном соответствии с качеством предоставленного оригинал-макета