Сложность и стоимость атаки методом тотального перебора
Атака методом тотального перебора, как правило, представляет собой разновидность атаки со знанием открытого текста. Если предположить, что атака методом тотального перебора является наиболее эффективной среди возможных атак на используемый вами симметричный алгоритм шифрования, то ключ должен быть достаточно длинным, чтобы успешно отразить эту атаку. Насколько длинным?
Среди параметров, которые необходимо принимать во внимание при рассмотрении атаки методом тотального перебора, прежде всего, надо упомянуть об общем количестве проверяемых ключей и о времени, затрачиваемом противником на проверку одного ключа. Количество ключей для конкретного алгоритма обычно фиксировано. Например, DES-алгоритм использует 56-битный ключ. Это означает, что его ключевое пространство содержит 256 ключей.
Скорость проверки ключей играет менее важную роль, чем их количество. Для простоты изложения можно считать, что вне зависимости от алгоритма шифрования, время, которое требуется на проверку одного ключа, одинаково. На практике данное предположение неверно, и для разных, криптографических алгоритмов это время может различаться в десятки раз. Поскольку нашей целью является отыскание такой длины ключа, при которой стойкость алгоритма шифрования против атаки методом тотального перебора в миллионы раз превышает предел, делающий эту атаку неосуществимой на практике, то сделанное нами предположение вполне оправдано.
При решении вопроса о достаточной длине ключа в качестве алгоритма шифрования чаще всего рассматривается DES-алгоритм. В 1977 г. американские криптологи У. Диффи (W.Diffie) и М. Хеллман (M.Hellman) заявили, что при существующем уровне развития компьютерной технологии можно построить специализированный суперкомпьютер для вскрытия ключей DES-алгоритма методом тотального перебора. Имея в своем составе 1 млн микросхем, каждая из которых способна проверять 1 млн ключей в секунду, этот суперкомпьютер перебрал бы все 256 ключей за 20 час.
Атака методом тотального перебора идеально подходит для реализации на параллельном суперкомпьютере, состоящем из многих процессоров. Отдельным процессорам, ведущим поиск ключа, нет необходимости устанавливать связь с другими процессорами суперкомпьютера во время выполнения своей части поиска. Следовательно, все процессоры специализированного суперкомпьютера, предназначенного для параллельного поиска ключей, необязательно находятся даже в одном городе, не говоря уже об одном помещении.
В 1993 г. американский криптолог М. Винер (M.Wiener) спроектировал суперкомпьютер для атаки на DES-алгоритм методом тотального перебора. Рассуждения Винера верны не только для DES-алгоритма, но и практически для любого другого алгоритма шифрования. Суперкомпьютер, разработанный Винером, состоит из специализированных микросхем, плат и стоек. По мнению Винера, для того чтобы гарантировать вскрытие 56-битного ключа за 7 час, на изготовление такого суперкомпьютера потребуется не более 1 млн долларов. По закону Мура, вычислительная мощь компьютеров удваивается каждые полтора года. Поэтому к 2001 г. стоимость суперкомпьютера, придуманного Винером, уменьшится в 10 раз и составит всего-навсего 100 тыс. долларов. Это означает, что уже сейчас крупные компании и “крутые” криминальные структуры могут вскрывать 56-битные ключи. Для военных криптоаналитиков в большинстве индустриально развитых стран доступны 64-битные ключи.
В 1996 г. Диффи, Винер и другие авторитетные американские криптологи опубликовали результаты своей исследовательской работы по определению длины ключа, необходимой для адекватной защиты информации от атаки методом тотального перебора (табл. 6.1).
Таблица 6.1. Стоимость и вычислительная сложность атаки
методом тотального перебора
Кто атакует | Бюджет | Сложность атаки | Стойкий ключ
| |
|
| 40 бит | 56 бит | |
Хакер Малый бизнес | 1000 долл. 10 тыс. долл. | 1 неделя 12 мин. | Никогда 556 дней | 45 бит 64 бита |
Крупная компания | 10 млн долл. | 0.005 с | 6 мин | 70 бит |
Федеральное агентство | 300 млн долл. | 0.0002 с | 12с | 75 бит |
К приведенным в табл. 6.1 цифрам следует относиться с осторожностью. Теоретический расчет затрат на проведение атак методом тотального перебора на криптографические ключи разной длины всегда существенно отличается от того, с чем криптоаналитики сталкиваются на практике при покупке или разработке суперкомпьютеров для ведения такого рода атак. Объясняется это тем, что одни сделанные допущения оказываются весьма далеки от реальности, в то время как другие факторы просто не принимаются во внимание. В данном случае Диффи, Винер и другие посчитали, что при создании специализированного суперкомпьютера для атаки методом тотального перебора будут использоваться заказные микросхемы ценой не более 10 долл. По оценкам АНБ, такие микросхемы стоят, как правило, в 100 раз дороже. У АНБ вызвало сомнение и допущение о том, что вне зависимости от алгоритма шифрования, лишь длина ключа определяет сложность криптоаналитической атаки. Кроме того, при составлении таблицы не были учтены затраты на научно-исследовательские и опытно-конструкторские работы, которые для первого экземпляра суперкомпьютера обычно составляют не менее 10 млн долл. Не были также приняты во внимание расходы на приобретение компьютерной памяти.
Из сказанного можно сделать весьма важный вывод. Если кто-то очень захочет узнать использованный вами ключ, ему нужно всего лишь потратить достаточное количество денег. Поэтому определяющей является стоимость зашифрованной вами информации. Если цена ей в базарный день — около 2 долл., вряд ли кто-то решится потратить 1 млн, чтобы ее заполучить. Но если прибыль от прочтения вашей шифровки составляет 100 млн долл., — берегитесь! Единственным утешением может послужить тот факт, что с течением времени любая информация очень быстро устаревает и теряет свою ценность.
- Группа подготовки издания:
- 199034, Санкт-Петербург, 9-я линия, 12. Предисловие
- Компьютерная безопасность Глава 1
- Угрозы компьютерной безопасности Компьютерная преступность в России
- Тенденции
- Internetкак среда и как орудие совершения компьютерных преступлений
- Синдром Робина Гуда
- История одного компьютерного взлома
- Компьютер глазами хакера
- Кто такие хакеры
- Методы взлома компьютерных систем
- Атаки на уровне систем управления базами данных
- Атаки на уровне операционной системы
- Атаки на уровне сетевого программного обеспечения
- Защита системы от взлома
- Глава 2
- Программы-шпионы Программные закладки
- Модели воздействия программных закладок на компьютеры Перехват
- Искажение
- Уборка мусора
- Наблюдение и компрометация
- Защита от программных закладок
- Защита от внедрения программных закладок
- Выявление внедренной программной закладки
- Удаление внедренной программной закладки
- Троянские программы
- Откуда берутся троянские программы
- Где обитают и как часто встречаются троянские программы
- Как распознать троянскую программу
- Клавиатурные шпионы
- Имитаторы
- Фильтры
- Заместители
- Как защитить систему от клавиатурных шпионов
- Глава 3
- Парольная защита операционных систем Парольные взломщики
- Что такое парольный взломщик
- Как работает парольный взломщик
- Взлом парольной защиты операционной системыUnix
- Взлом парольной защиты операционной системыWindows nt База данных учетных записей пользователей
- Хранение паролей пользователей
- Использование пароля
- Возможные атаки на базу данныхSam
- Защита системы от парольных взломщиков
- Как сделать парольную защитуWindows 95/98 более надежной
- Как установить парольную защитуWindows 95/98
- Почему парольная защита Windows 95/98 ненадежна
- Как предотвратить несанкционированную загрузку системы
- Как запретить кэширование паролей вWindows 95/98
- Соблюдайте осторожность: парольная защита ненадежна
- Глава 4
- Безопасность компьютерной сети Сканеры
- Сканер в вопросах и ответах Что такое сканер?
- Каковы системные требования для работы со сканерами?
- Трудно ли создать сканер?
- Что не по силам даже самому совершенному сканеру?
- Насколько легальны сканеры?
- В чем различие между сканерами и сетевыми утилитами?
- Сканер в действии
- Satan, Jackal и другие сканеры
- Анализаторы протоколов
- Локальное широковещание
- Анализатор протоколов как он есть
- Защита от анализаторов протоколов
- Криптографические методы защиты информации Глава 5
- Основы криптографии Зачем нужна криптография
- Терминология Шифрование и расшифрование
- Аутентификация, целостность и неоспоримость
- Шифры и ключи
- Симметричные алгоритмы шифрования
- Алгоритмы шифрования с открытым ключом
- Криптоаналитические атаки
- Надежность алгоритма шифрования
- Сложность криптоаналитической атаки
- Шифры замены и перестановки
- Шифры замены
- Шифры перестановки
- Роторные машины
- Операция сложения по модулю 2
- Одноразовые блокноты
- Компьютерные алгоритмы шифрования
- Глава 6
- Криптографические ключи Длина секретного ключа
- Сложность и стоимость атаки методом тотального перебора
- Программная атака
- "Китайская лотерея"
- Биотехнология
- Термодинамические ограничения
- Однонаправленные функции
- Длина открытого ключа
- Какой длины должен быть ключ
- Работа с ключами
- Генерация случайных и псевдослучайных последовательностей
- Псевдослучайные последовательности
- Криптографически надежные псевдослучайные последовательности
- Генерация ключей
- Сокращенные ключевые пространства
- Плохие ключи
- Случайные ключи
- СтандартAnsi x9.17
- Нелинейные ключевые пространства
- Передача ключей
- Проверка подлинности ключей
- Контроль за использованием ключей
- Обновление ключей
- Хранение ключей
- Запасные ключи
- Скомпрометированные ключи
- Продолжительность использования ключа
- Уничтожение ключей
- Глава 7
- Криптографические протоколы Что такое криптографический протокол
- Зачем нужны криптографические протоколы
- Распределение ролей
- Протокол с арбитражем
- Протокол с судейством
- Самоутверждающийся протокол
- Протокол обмена сообщениями с использованием симметричного шифрования
- Протокол обмена сообщениями с использованием шифрования с открытым ключом
- Гибридные криптосистемы
- "Шарады" Меркля
- Цифровая подпись
- Подписание документов при помощи симметричных криптосистем и арбитра
- Подписание документов при помощи криптосистем с открытым ключом
- Отметка о времени подписания документа
- Использование однонаправленных хэш-функций для подписания документов
- Дополнительная терминология
- Несколько подписей под одним документом
- Неоспоримость
- Цифровая подпись и шифрование
- Основные криптографические протоколы Обмен ключами
- Обмен ключами для симметричных криптосистем
- Обмен ключами для криптосистем с открытым ключом
- Атака методом сведения к середине
- Блокировочный протокол
- Протокол обмена ключами с цифровой подписью
- Одновременная передача ключа и сообщения
- Множественная рассылка ключей и сообщений
- Аутентификация
- Аутентификация при помощи однонаправленных функций
- Отражение словарной атаки при помощи "изюминок"
- Периодическая сменяемость паролей
- Аутентификация при помощи криптосистем с открытым ключом
- Формальный анализ криптографических протоколов
- Многоключевая криптография с открытым ключом
- Множественная рассылка шифрованных сообщений
- Распределение ответственности
- Распределение ответственности и мошенничество
- Вспомогательные криптографические протоколы Отметка о времени создания файла
- Отметка о времени создания файла и арбитраж
- Связующий протокол
- Распределенный протокол
- Подсознательный канал
- Практическое применение подсознательного канала
- Неоспоримая цифровая подпись
- Цифровая подпись с назначенным конфирмантом
- Цифровая подпись по доверенности
- Групповые подписи
- Цифровая подпись с дополнительной защитой
- Предсказание бита
- Предсказание бита с помощью симметричной криптосистемы
- Предсказание бита с помощью однонаправленной функции
- Предсказание с помощью генератора псевдослучайных битовых последовательностей
- Бросание монеты
- Бросание монеты с помощью предсказания бита
- Бросание монеты с помощью однонаправленной функции
- Бросание монеты с помощью криптосистемы с открытым ключом
- Игра в покер
- Специальные криптографические протоколы Доказательство с нулевым разглашением конфиденциальной информации
- Протокол доказательства с нулевым разглашением конфиденциальной информации
- Параллельные доказательства с нулевым разглашением конфиденциальной информации
- Неинтерактивные протоколы доказательства с нулевым разглашением конфиденциальной информации
- Удостоверение личности с нулевым разглашением конфиденциальной информации
- Неосознанная передача информации
- Анонимные совместные вычисления
- Вычисление средней зарплаты
- Как найти себе подобного
- Депонирование ключей
- Депонирование ключей и политика
- Глава 8
- Надежность криптосистем
- Как выбрать хороший криптографический алгоритм
- Криптографические алгоритмы, предназначенные для экспорта из сша
- Симметричный или асимметричный криптографический алгоритм?
- Шифрование в каналах связи компьютерной сети
- Канальное шифрование
- Сквозное шифрование
- Комбинированное шифрование
- Шифрование файлов
- Аппаратное и программное шифрование Аппаратное шифрование
- Программное шифрование
- Сжатие и шифрование
- Как спрятать один шифртекст в другом
- Почему криптосистемы ненадежны
- Реализация
- Учет реальных потребностей пользователей
- Законодательные ограничения
- Слишком малая длина ключа
- Потайные ходы
- Шифрование вокруг нас
- Приложение Англо-русский криптологический словарь с толкованиями
- Лексикографические источники
- Сокращения Английские
- Русские
- Условные обозначения
- Криптологический словарь
- Глава 1 6
- Глава 2 24
- Глава 3 52
- Глава 4 75
- Глава 5 92
- Глава 6 110
- Глава 7 138
- Глава 8 204